
Learning Driver Behavior Models for Predicting
Urban Traffic Situations

Lernen von Fahrermodellen zur Prognose urbaner
Verkehrssituationen

Der Technischen Fakultät der
Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur Erlangung des

Doktorgrades Dr.-Ing.

vorgelegt von

Moritz Sackmann

aus Göttingen

Als Dissertation genehmigt
von der Technischen Fakultät der
Friedrich-Alexander-Universtität Erlangen-Nürnberg

Tag der mündlichen Prüfung 04.03.2024

Gutachter Prof. Dr.-Ing. Jörn Thielecke

Prof. Gustav Markkula, Ph.D.

Abstract

An automated vehicle needs to be able to predict the future evolution of a perceived traffic
situation to safely and comfortably interact with surrounding vehicles. This work focuses on
generating predictions by executing a traffic simulation. The advantage of this simulation-
based prediction is that the predictions of all vehicles are constructed simultaneously and
can interact with each other. Moreover, conditional predictions become possible, e.g., “How
would the traffic situation evolve, if the automated vehicle merges in front of or behind another
vehicle?”

The behavior model is crucial for the accuracy of the prediction. Therefore, this thesis
investigates three approaches to learning a behavior model: Multi-Step Behavior Cloning,
Reinforcement Learning, and Inverse Reinforcement Learning.

For Multi-Step Behavior Cloning, the behavior model is trained such that it selects an action
sequence, and hence a trajectory, as similar as possible to human drivers, starting from the
same initial situation. The training requires a differentiable simulation environment, which is
introduced in this work.

In contrast, the training goal of Reinforcement Learning (RL) is to maximize a hand-defined
reward function. With this, explicit goals can be formulated, such as avoiding collisions,
remaining on the road, and maintaining safety distances. A modification of the method is
proposed to represent different driving styles with one single behavior model, e.g., sporty or
careful driving.

To model human driving with RL, the reward function must be adapted until the resulting tra-
jectories are similar enough to human trajectories. This tedious procedure can be automatized
with Inverse Reinforcement Learning (IRL). To this end, Adversarial Inverse Reinforcement
Learning (AIRL) is employed. With the reconstructed reward function, the behavior model is
trained in additional fictional critical situations to obtain a more robust model.

Finally, all trained models are compared under equal conditions in an untrained roundabout.
The IRL algorithms achieve the best results with collision rates below 1% and root mean
squared prediction errors (RMSE) below 22 m. RL and IRL reduce the collision rate compared
to Behavior Cloning, because they directly penalize collisions beyond the goal of pure
imitation.

iii

Zusammenfassung

Ein automatisiertes Fahrzeug muss die Entwicklung einer wahrgenommenen Verkehrssituation
vorhersagen können, damit es sicher und komfortabel mit anderen Fahrzeugen interagieren
kann. Diese Arbeit untersucht verschiedene Methoden, um Vorhersagen mit einer Simulation
der Situation zu erzeugen. Der simulationsbasierte Ansatz ist vorteilhaft, weil die Vorhersagen
aller Fahrzeuge gleichzeitig aufgebaut werden und aufeinander reagieren können. Außerdem
werden bedingte Vorhersagen möglich, z.B. „Wie entwickelt sich die Situation, wenn sich das
automatisierte Fahrzeug vor oder hinter einem anderen Fahrzeug einfädelt?“

Das Verhaltensmodell der simulierten Fahrzeuge hat entscheidenden Einfluss auf die Ge-
nauigkeit der Vorhersage. Daher befasst sich diese Dissertation mit drei Ansätzen, um ein
Verhaltensmodell zu lernen: Multi-Step Behavior Cloning, Reinforcement Learning und
Inverse Reinforcement Learning.

Bei Multi-Step Behavior Cloning wird das Verhaltensmodell so trainiert, dass es ausgehend
von derselben Ausgangssituation eine möglichst ähnliche Aktionsfolge und damit Trajektorie
wie ein menschlicher Fahrer wählt. Für das Training wird eine differenzierbare Simulations-
umgebung benötigt, die in dieser Arbeit vorgestellt wird.

Im Gegensatz dazu ist das Trainingsziel bei Reinforcement Learning (RL) die Maximierung
einer händisch definierten Belohnungsfunktion. So können explizite Ziele vorgegeben werden,
z.B., dass Fahrzeuge Kollisionen vermeiden, auf der Fahrbahn bleiben und Sicherheitsabstände
einhalten. Die Methode wird erweitert, um mit einem Verhaltensmodell unterschiedliche
Fahrverhalten zu repräsentieren, z.B. sportlichere oder vorsichtigere Fahrer.

Um menschliches Fahrverhalten mit RL nachzubilden, muss die Belohnungsfunktion so
lange angepasst werden, bis die resultierenden Trajektorien ähnlich wie echte Trajektorien
aussehen. Dieser aufwändige Prozess wird von Methoden des Inverse Reinforcement Learning
(IRL) automatisiert. Hierfür wird unter anderem Adversarial Inverse Reinforcement Learning
(AIRL) verwendet. Mit der rekonstruierten Belohnungsfunktion wird das Verhaltensmodell
außerdem in fiktiven kritischen Situationen trainiert, um eine höhere Robustheit des Modells
zu erreichen.

Abschließend werden alle trainierten Modelle unter gleichen Bedingungen in einem untrainier-
ten Kreisverkehr verglichen. Hierbei schneiden die IRL-Algorithmen bei 10 s-Vorhersagen
mit Kollisionsraten unter 1 % und Vorhersagefehlern (RMSE) unter 22 m am besten ab. RL
und IRL verringern die Kollisionsrate im Vergleich zu Behavior Cloning, weil neben dem
Ziel der Imitation des Verhaltens auch Kollisionen direkt bestraft werden.

v

Acknowledgements

I joined Audi in 2017 to write my master thesis. Originally, I did not plan to stay longer, but
things turned out differently. This was mainly thanks to my later supervisor Uli, who took an
early interest in my work and convinced me to stay to pursue a Ph.D. Thank you Uli for so
much—for your trust, the freedom to explore the research direction that I considered the most
promising, countless hours of discussions and so many good ideas.

I am also very grateful to my university advisor, Professor Jörn Thielecke. I was always
impressed by your desire to understand every detail of an idea, which in turn always pushed
me to dig deeper to have an answer to all of your questions. A big thank you also goes to
Professor Gustav Markkula for co-examining my thesis.

Back to Audi—I encountered a great environment in the AI Lab with many other current and
former Ph.D. students who supported and motivated each other. I am grateful for having met
so many great people here: Henrik, our collaboration was highly motivating and lead to great
results. Johannes and Michael, your dry humor was an important reason to spend not only
the day, but also the evening in the office. Franzi, it was great to have you for discussions
that went beyond my mathematical understanding! Pia and Sophie, the anecdotes from your
user studies could fill a book and were always a welcome excuse to take a break. I loved the
atmosphere in our Doktorandenbüro and hope we will revive this from time to time! Also
Siedi, thank you for your vision of the AI Lab—this setup was ideal.

A big thanks goes to so many other colleagues from Audi for the great team spirit and for
sharing enjoyable moments also outside of work. Specifically, I would like to thank Richard,
for taking the initiative with the drone recordings; Stephi, for supporting us and the students;
and Stefan, for pulling back the curtain and saying how things really are.

Equally, I am grateful for the colleagues that I met at the LIKE. Adam, Markus, Christian, Flo,
Rossouw, Burak, Sebastian, Lukas—thank you for the great collaboration, critical feedback
and encouragement! Also, thank you to all the students that I supervised and worked together
with. I learned as much from you as you from me.

I am indebted to my friends from school and university who supported me throughout the
highs and lows of this time, despite me often being far away and having little spare time.
Further, I would like to thank my parents Silke and Michael and my sister Carlotta. You
always supported me and your counsel has been pivotal in shaping my path. And finally,
thank you to Nicola for always being there for me.

Verden, March 2024 Moritz Sackmann

vii

Contents

List of Abbreviations xiii

Symbols and Mathematical Notation xv

1 Introduction 1
1.1 Outline . 3
1.2 Contributions . 5
1.3 Publications . 7

2 Fundamentals of Driver Behavior Modeling 9
2.1 Background: Applications . 9

2.1.1 Behavior Planning . 9
2.1.2 Behavior Simulation . 11
2.1.3 Related Tasks . 11

2.2 Core Challenges of Trajectory Prediction 12
2.3 General Problem Formulation . 13
2.4 Approaches to Trajectory Prediction . 15

2.4.1 Physics-Based Models . 16
2.4.2 Maneuver-Based Models . 18
2.4.3 Interaction-Aware Models . 20

2.4.3.1 Passive Interaction-Awareness 21
2.4.3.2 Reactive Interaction-Awareness 24
2.4.3.3 Proactive Interaction-Awareness 30

2.4.4 Other Prediction Methods . 32
2.4.5 Discussion . 33

2.5 Handling of Uncertainty . 36
2.5.1 Conditioning as an Enabler . 36
2.5.2 Representation of Uncertainty . 37

2.6 Environment Representation . 38
2.7 Conclusion . 40

3 Simulation Setup 43
3.1 Kinematic Model . 43
3.2 Observation Model . 45
3.3 Dataset . 48
3.4 Implementation . 51

ix

CONTENTS

4 Direct Policy Learning: Behavioral Cloning 55
4.1 Single-Step Behavioral Cloning . 56

4.1.1 Approach . 56
4.1.2 Baseline Model . 58
4.1.3 Discussion . 59

4.2 Multi-Step Training . 61
4.2.1 The Need for a Differentiable Simulation 62
4.2.2 Training . 64
4.2.3 Related Works . 68

4.3 Experiments . 71
4.3.1 Single-Step Training . 71
4.3.2 Multi-Step Training . 75
4.3.3 Model Comparison . 80

4.4 Conclusion . 85

5 Learning from Rewards: Reinforcement Learning 89
5.1 Fundamentals of Reinforcement Learning 90

5.1.1 Policy Gradient Reinforcement Learning 93
5.1.2 Advantage Estimates . 98
5.1.3 Proximal Policy Optimization . 102

5.2 Multi-Agent Reinforcement Learning . 103
5.3 Experiments: Single-Agent Reinforcement Learning 107

5.3.1 Reward Function . 107
5.3.2 Learning to Drive . 110
5.3.3 Reducing the Training Time . 117

5.4 Experiments: Multi-Agent Reinforcement Learning 119
5.4.1 Setup of the Partially Observable Stochastic Game 119
5.4.2 Learning to Drive . 121

5.5 Modeling Individual Driver Traits . 124
5.6 Conclusion . 128

6 Reconstructing the Rewards: Inverse Reinforcement Learning 133
6.1 Adversarial Learning . 134

6.1.1 Theoretical Background: Generative Adversarial Imitation Learning 136
6.1.2 Adversarial Inverse Reinforcement Learning 138

6.2 Adaptions for Behavior Prediction . 140
6.3 Related Works . 144
6.4 Experiments . 146

6.4.1 Generative Adversarial Imitation Learning 148
6.4.2 Adversarial Inverse Reinforcement Learning 156

x

CONTENTS

6.5 Conclusion . 162

7 Comparison of All Models 165
7.1 Visual Comparison of the Model Performance 165
7.2 Quantitative Evaluation . 166
7.3 Training- and Runtime . 172
7.4 Conditional Prediction . 174
7.5 Conclusion . 176

8 Conclusion 177
8.1 Summary . 177
8.2 Limitations and Future Work . 180

A Evaluation of the Dataset Accuracy 183
A.1 Dataset Statistics . 186

B Mathematical Supplements 193
B.1 Mean Error, Standard Deviation and RMSE 193
B.2 The Squashed Gaussian Distribution . 194
B.3 Maximum Entropy Distribution . 194

C Training Details 199
C.1 Kinematic Model Parameters . 199
C.2 Behavioral Cloning . 199
C.3 Reinforcement Learning . 202
C.4 AIRL, GAIL . 205

D Additional Model Executions 207

Bibliography 213

xi

List of Abbreviations

Adam Adaptive Moment Estimation
AIRL Adversarial Inverse Reinforcement Learning

BC Behavioral Cloning

CA Constant Acceleration
CNN Convolutional Neural Network
CTRA Constant Turn Rate and Acceleration
CTRV Constant Turn Rate and Velocity
CV Constant Velocity
CVAE Conditional Variational Auto-Encoder

DFS DataFromSky
DQN Deep Q-Network

FLOP Floating Point Operation

GAE Generalized Advantage Estimate
GAIL Generative Adversarial Imitation Learning
GAN Generative Adversarial Network
GNN Graph Neural Network
GNSS Global Navigation Satellite System
GP Gaussian Process
GPU Graphics Processing Unit
GRU Gated Recurrent Unit

HMM Hidden Markov Model

IDM Intelligent Driver Model
INS Inertial Navigation System
IPPO Independent Proximal Policy Optimization
IRL Inverse Reinforcement Learning

LiDAR Light Detection and Ranging
LSTM Long Short-Term Memory

MARL Multi-Agent Reinforcement Learning
MOBIL Minimize Overall Braking Induced by Lane Change
MS Multi-Step

xiii

LIST OF ABBREVIATIONS

PDE Partial Differential Equation
PF Particle Filter
POMDP Partially Observable Markov Decision Process
POSG Partially Observable Stochastic Game
PPO Proximal Policy Optimization

REINFORCE REward Increment = Nonnegative Factor x Offset Reinforcement x Charac-
teristic Eligibility

RL Reinforcement Learning
RMSE Root Mean Square Error
RNN Recurrent Neural Network

SAC Soft Actor Critic
SIMD Single Instruction, Multiple Data
SMAC StarCraft Multi-Agent Challenge
SVM Support Vector Machine

TRPO Trust Region Policy Optimization

UKF Unscented Kalman Filter

VGMM Variational Gaussian Mixture Model

WTA Winner-Takes-All

xiv

Symbols and Mathematical Notation

Symbol Description

General
|x| Absolute value of x
|X| Cardinality of set X
exp(x) Alternative notation for ex

Random variables
bold letters Random variables or random vectors, e.g., y
regular letters Realization of random variable or random vector, e.g., y
y ∼ y y is a realization of the random variable y
Ωy Sample space of the random variable y, i.e., y ∈ Ωy
p(y) = p(y = y) Probability or density of random variable y assuming the

value y
E{y} Expected value of random variable y
p(y|x) Conditional probability of y given x
E{y|x} Conditional expected value
N (µ,σ2) Normal distribution with mean µ and standard deviation σ
N (µ,Σ) Normal distribution with mean vector µ and covariance ma-

trix Σ
U(a,b) Continuous uniform distribution on interval [a,b]

Simulation properties
k Timestep. Negative values indicate past, 0 is the prediction

origin, positive values are in the future.
∆t Time resolution of the prediction, typically ∆t= 0.2s
H Prediction horizon, number of predicted steps.
N Number of vehicles in predicted traffic situation

Prediction formalism
a : b Inclusive range a,a+1, . . . , b−1, b
a : Inclusive range with undefined end, i.e., a,a+1, . . .
: b Inclusive range with undefined beginning, i.e., . . . , b−1, b
yjk Predicted future state of agent j at timestep k (random vari-

able)
yj = yj1:H All predicted future states of agent j
y = y1:N

1:H Predicted future states of all agents at all timesteps

xv

LIST OF ABBREVIATIONS

Symbol Description

xjk Past state of agent j at timestep k
xj = xj:0 Past states of agent j
x = x1:N

:0 Past states of all vehicles in the traffic situation
Y = Ωy State space of predicted states, yjk ∈ Y with yjk ∼ yjk
m Maneuver
M Map
p(yj |x,M) Probability density of future states of vehicle j, given the

past states of all vehicles and the map.
p(y|x,M) Probability density of the future states of all vehicles, given

their past states and the map.

Simulation components
a,a,A Action: Random variable, realization, action space
o,o,O Observation: Random variable, realization, observation

space
π(a = a|o = o) Stochastic policy: Conditional density of action, given ob-

servation
π :O→ A,o 7→ a Deterministic policy function, mapping observations to ac-

tions
πθ Policy neural network with parameters θ
W j
k External world state from perspective of vehicle j, subsum-

ing all surrounding vehicle states y1:N
k and the map.

κ : (y,a) 7→ y Kinematic model, mapping the current kinematic state and
action to the next state

λ : (yjk,W
j
k) 7→ ojk Observation model, mapping the current vehicle and world

state to an observation

Neural networks
ℓ(x) General loss function
∇θℓ(x) Gradient of loss function w.r.t. the neural network parame-

ters θ
f2(x) = x2 Quadratic loss function
fH(x) Huber loss function
α Learning rate for neural network optimization

Reinforcement Learning
R : (y,a) 7→ r Reward function, determining the reward for selecting action

a in state y
Rj Reward function of agent j in a multi-agent environment

xvi

LIST OF ABBREVIATIONS

Symbol Description

ω Weight of reward terms, i.e.,
R(y,a) = ω1R1(y,a)+ω2R2(y,a)+ . . .

rk =R(ok,ak) Reward at time step k
ℓRL(θ) Pseudo-loss, used to estimate the RL policy gradient
τ j Trajectory ((yj0,o

j
0,a

j
0, r

j
0),(yj1,o

j
1,a

j
1, r

j
1), . . .) of states, ob-

servations, actions and rewards of agent j
τ ∼ πθ Trajectory τ is obtained by executing the stochastic policy

πθ in the simulated environment
Eτ∼πθ

{f(x)} Expected value of f(x) when executing the stochastic policy
πθ repeatedly. Hereby, x is some value of the generated
trajectories, e.g., the observation or reward.

σmin Lower boundary of policy action noise σ
DRL = {τ1, τ2, . . .} Dataset of trajectories collected by executing the policy in

the simulated environment
τa:b Snippet from trajectory τ from timestep a to b
R(τa:b) Sum of rewards along trajectory between timestep a and b,

possibly discounted by γ. R(τa:b) =∑b
k=a γ

(k−a)rk
R(τ) =R(τ0:∞) Return, i.e., sum of all rewards along the trajectory
γ Discount factor, which decreases the value of future rewards
R(τ) Median return of multiple trajectories, used to measure the

performance of a policy
Vπ : o 7→ R Value function: expected cumulated rewards when following

policy π after making observation o
V̂ψ : o 7→ R Value network with parameters ψ; estimate of Vπ
Â

(n)
k n-step advantage estimate after trajectory step k

Ψ Gradient weight, e.g., generalized advantage estimate ΨGAE

ΨGAE(λ,γ)
k Generalized Advantage Estimate gradient weight, see (5.24)

R
GAE(λ,γ)
k Generalized Advantage Estimate return, see (5.25)

clip(x; l,u) Function that clips x if it exceeds the lower or upper bound l
or u

Inverse Reinforcement Learning
DE Dataset of expert demonstrations
DS Dataset of demonstrations from policy execution
Dϕ :B→ [0,1] GAIL Discriminator neural network with parameters ϕ

Kinematic model
px,py Coordinates of vehicle center of gravity
ψ Vehicle heading angle

xvii

LIST OF ABBREVIATIONS

Symbol Description

δ Vehicle steering angle
v Speed
alon,alat Longitudinal and lateral acceleration
β Slip angle
lr, lf Distance from rear or front axle to center of gravity

xviii

1 Introduction

For decades, vehicles have been travelling with little human intervention in the air, in space,
on sea, on the moon and on Mars [Web14]. And yet, one of the most common transportation
experiences to humans—driving a car—requires continuous control and supervision. In recent
years, some companies have been experimenting with “Level 4” automated driving systems
that automatically control a road vehicle [Ack21]. However, these systems are still subject of
research and development and work only under specific conditions in limited areas [Ing23].
After at least thirty years of research [Pom89; DZ87], what makes the development of fully
automated road vehicles so challenging?

A key reason lies in the immense diversity of driving situations: The fundamental task of
reliably perceiving a traffic situation is still a subject of research [Van+18], involving the de-
tection of the road layout and the position, heading, velocity and further object characteristics
of other traffic participants such as cars, pedestrians, kids, animals, or cyclists. This poses
tremendous demands on the perception system, especially under adverse conditions such as
bad lighting or partial occlusion.

Then, after perceiving the traffic situation, the automated vehicle needs to interpret it to make
a plan for its own future behavior. Consider for example the situation faced by the driver of
the red vehicle in Figure 1.1. He might wonder: “Can I enter the roundabout before the white
car? Or would this be impolite, because it forces the other vehicle to brake?”. Let us assume
that the red vehicle is an automated vehicle. In order to reason about such questions, it needs
a model of how its perceived environment will likely evolve in the next seconds. The better
the model of the environment, the more likely is it that it can make a plan that it does not need
to alter when it perceives the actual evolution of the situation.

Figure 1.1: Exemplary unclear right-of-way situation at a roundabout

1

1 INTRODUCTION

What makes such predictions even more challenging is that they sometimes depend on how
the automated vehicle itself behaves. For example, if the red vehicle accelerates and enters
the roundabout, the white vehicle will likely slow down compared to driving unhindered. If
the automated vehicle predicts the behavior of the white vehicle without considering its own
planned trajectory, it would likely predict the white vehicle to drive unhindered, and draw
the conclusion that it needs to stop at the entry. While the resulting behavior is safe, it might
often be too cautious and unnecessarily impede the overall traffic flow. This phenomenon
is known as the “freezing robot problem” [TK10] and occurs in highly interactive scenarios
such as roundabouts or merging situations with high traffic density.

For this reason, this thesis focuses on approaches to generate interacting and conditional
predictions of the trajectories of surrounding vehicles in the next 5 to 10 s. Specifically,
what sets the methods proposed in this work apart from many other approaches to trajectory
prediction, are the following aspects:

• Interacting predictions: The predictions describe a coherent evolution of the traffic
situation, where the predicted vehicles interact with each other. For example, the
proposed methods can predict that one vehicle enters the roundabout as soon as it
observes that a potentially conflicting vehicle is leaving the roundabout and a sufficiently
large gap emerges. This is in contrast to many other approaches to trajectory prediction
discussed in Section 2.4, which predict vehicle trajectories independently. The latter
leads to potentially overlapping predicted trajectories where the predicted vehicles seem
to “drive through each other”.

• Conditional predictions: The predictions can be issued conditional on the future
trajectory of one vehicle. This can be leveraged by a cooperative behavior planning
system of an automated vehicle: It compares multiple future planned trajectories
for itself. Conditioned on each plan, it predicts the evolution of the traffic situation.
Ultimately, it selects the planned trajectory that is not only optimal for itself, but also
for others.

To implement a prediction that fulfills these two points, it is realized as a microscopic traffic
simulation, in which all vehicles from the situation are modeled as independent agents. The
states of the vehicles are initialized according to the perceived traffic situation that shall be
predicted. Then, each agent follows a behavior model, which instructs it how to act, depending
on a simulated observation of its local environment. After processing the actions of all agents
with a kinematic model, their states in the next time step are computed. By executing this
scheme repeatedly, the trajectory predictions are constructed step by step. Thereby, the
predicted vehicles can observe each other and therefore interact with each other. Conditional
predictions can be realized by fixating the trajectory of one agent to a specific trajectory prior
to executing the simulation of the surrounding vehicles.

2

1.1 OUTLINE

This thesis is not the first work to propose such a prediction-by-simulation approach. Other
notable works that have shaped the ideas in this work have been presented by Schulz et al.
[Sch+18b; Sch+19] and a group of researchers from Stanford University [WRK16; Kue+17;
Bha+18; Bha+19]. The key question that differentiates these works is the way in which the
behavior of vehicles in the simulation is modelled. While [Sch+18b] formulates a set of
rules to determine the behavior, all other works follow a data-driven approach and learn the
behavior model from a dataset of real-world trajectories.

In the literature [Kue+17; SB18], the behavior model it is often referred to as the policy. It is
the central component in the simulation, as it decides whether the predictions will be plausible
and accurate. Thus, the central topic of this thesis is the investigation of different approaches
to obtaining the policy. To do so in a general and scalable manner, this work is exclusively
concerned with learning-based approaches, where the policy is implemented as a neural
network. Hereby, ideas from the previously mentioned works are picked up and extended, as
briefly discussed in the following section and explained in detail in the corresponding chapters
of this work.

1.1 Outline

Chapter 2 expands on the fundamentals of driver behavior modeling. It contains an overview of
potential applications and the challenges of trajectory prediction. After introducing a general
problem formulation, it provides a survey of different approaches to trajectory prediction and
motivates the choice of a simulation-based prediction approach.

The remaining content of this thesis can be illustrated with the “behavior triangle” depicted in
Figure 1.2. There are three perspectives on the description of behavior:

• Firstly, behavior can be described through the underlying goals, assuming that an actor
acts rationally to achieve his goals. The goals can be mathematically expressed as a
cost or reward function. For example, it can be assumed that drivers want to maximize
their progress along the road while driving safely and comfortably.

• Alternatively, behavior can be described as a function of the state and environment
of an actor. This is the policy, which describes how the actor behaves, depending
on his perceived state in the environment. For example, a set of rules or equations
could describe how a driver steers his vehicle to remain in the center of the road and to
maintain a comfortable distance to a preceding vehicle.

• And thirdly, behavior can be directly described through its concrete realization: This is
the trajectory of an actor, which emerges as he interacts with the environment through
his policy. Only this physical realization of the behavior, e.g., the position, velocity,
acceleration and steering over time can be measured. Ultimately, the goal of this work
is to obtain a prediction of the trajectory of other vehicles.

3

1 INTRODUCTION

Sim
ula

tio
n Roll

ou
t, C

ha
pte

r 3

Beh
av

ior
al

Clon
ing

, C
ha

pte
r 4

Inverse Reinforcement Learning, Chapter 6

Reinforcement Learning, Chapter 5

Trajectories

Policy

Reward Function

Figure 1.2: The “behavior triangle” sets the three perspectives on behavior discussed in this thesis
into perspective: Concrete behavior (trajectories); functions that generate concrete
behavior (policies); and goals (rewards) that can be used to derive policies or to explain
concrete behavior. Each chapter mentioned in the figure establishes a connection between
two of the blocks.

Chapters 3 to 6 can be interpreted as building the links between these three blocks, as indicated
in the figure.

Specifically, Chapter 3 introduces the microscopic traffic simulation that executes the behavior
policy. By executing the policy of all vehicles in the simulation, a prediction of their interacting
future trajectories is created. Hence, this chapter forms the connection from the policy to
trajectories in the behavior triangle. The simulation framework implemented in this thesis
is used for training and evaluating all presented approaches to learning a policy. Moreover,
the chapter describes the dataset of more than 4000 real-world trajectories that is used for
training and evaluation in all experiments.

With this background, different approaches to learning a driver behavior policy are presented
in Chapters 4 to 6. Chapter 4 introduces Behavioral Cloning (BC), a set of methods that
learn a policy by directly imitating the behavior observed in a dataset of trajectories. This
establishes the next connection in the behavior triangle—how to obtain a policy, given a set of
trajectories. Fundamentally, the task is formulated as a supervised learning problem, with the
idea of executing similar actions to the real-world drivers from the trajectory dataset, when
confronted with similar situations. One novelty in this thesis is to execute the policy neural
network in a differentiable traffic simulation, which allows to directly minimize the long-term
trajectory prediction error. This is opposed to minimizing only the error of predicting the
directly next acceleration and steering action of the policy, which has been proposed by
[WRK16; Sch+19] and multiple other works discussed in this chapter.

Next, an entirely different approach is presented in Chapter 5: Reinforcement Learning (RL).
Here, the goal is to find a policy that maximizes a manually defined reward function. In the

4

1.2 CONTRIBUTIONS

behavior triangle, this chapter establishes the link between rewards, which can be interpreted
as the goals of a driver, and the policy, that describes how to maximize the rewards and
thereby achieve the goals. The employed RL algorithm works by executing actions randomly
in the simulation, assessing which actions lead to high cumulative rewards, and increasing the
probability of selecting those actions in the next training epoch. The advantage of RL over BC
is that the resulting behavior of the policy can be directly influenced by the reward function,
e.g., to teach the policy to avoid collisions. Moreover, RL training happens entirely in the
simulation environment and does not require any real-world training data, thereby enabling
the training in a variety of situations for which no training data exists.

However, to accurately model the behavior of humans with RL, the goals of human drivers
must be known and specified as a mathematical reward function. As this reward function is
generally unknown and hard to model, Chapter 6 investigates two different approaches to
automatically construct a reward function that best explains a set of real-world trajectories.
This builds the final link in the behavior triangle, inferring the reward function from a
trajectory dataset. With this reconstructed reward function, a RL algorithm can be employed
to learn a policy that follows similar goals as human drivers, and hence produces trajectories
that resemble trajectories driven by humans. The methods presented in [Kue+17; Bha+18;
Bha+19] fall into this category. This thesis extends them with a different algorithm and
problem setup that allows for better interpretability of the inferred reward function. Moreover,
a training procedure that trains in real-world situations as well as simulated situations is
proposed. The idea is to learn a policy that predicts real situations accurately, but is also
able to handle situations for which real-world training data is hard to obtain, for example
near-collisions.

Finally, a comparison of the different approaches to learning a policy in terms of plausibility,
accuracy and ability to generalize to untrained situations is made in Chapter 7. The comparison
is carried out under equal conditions, e.g., by training on the same dataset, using the same
neural network architecture for the policy, and evaluating on the same dataset. Chapter 8
concludes the results and discusses limitations and opportunities for future research.

1.2 Contributions

Many ideas lined out in this work have been published in [Sac+20b; Sac+21; Kon+21;
Sac+22a; Sac+22b]. Throughout this work, all connected publications are printed in bold
letters, with a comprehensive list on page 213f. This thesis aims to set the central publications
into perspective, extend the ideas, and to compare the performance of the different methods
under equal conditions. The main contributions are:

• Multi-step training (Chapter 4, [Sac+20b; Sac+21]): Other works in BC train a policy
by minimizing the prediction error of the next action (acceleration, steering), based on

5

1 INTRODUCTION

the current local environment of a vehicle. Policies trained in this fashion are instable,
because they are not confronted with the consequences of their actions during training.
For example, they tend to drift off the road and are unable to recover from this during
long-term predictions. Instead, this work proposes multi-step training, where the policy
is trained to directly minimize the multi-step trajectory prediction error.

• Differentiable simulation environment (Chapters 3 to 4, [Sac+20b; Sac+21]): To
realize multi-step training, the gradient of the trajectory prediction error must be
computed with respect to the policy neural network parameters. This means that not
only the policy, but the full simulation environment needs to be implemented in a
framework that is capable of automatic differentiation. Hence, no standard simulation
environment such as Carla [Dos17] can be used. Moreover, the simulation environment
that is implemented as a part of this thesis is capable of simulating more than 2000 s of
vehicle trajectories in 1 s of computation time on a single CPU core. This allows for
fast training times of one to a few hours for any method presented in this work.

• Advances in Multi-Agent Reinforcement Learning (MARL) for traffic situation
modeling (Chapter 5, [Kon+21; Sac+22a]): The previously mentioned multi-step
training approach to learning a policy is limited in that its goal is to imitate the ground
truth trajectories. No secondary goals can be formulated, e.g., to teach the policy to
avoid collisions under any circumstances. Moreover, multi-step training is restricted
to situations for which ground truth trajectories have been recorded. To rectify these
deficiencies, a MARL approach to learning a policy is proposed. The training takes
place in simulated traffic situations with the goal of maximizing a manually specified
reward function. To learn a policy that is capable of handling the interaction between
vehicles, e.g., right-of-way situations, the single-agent Proximal Policy Optimization
algorithm [Sch+17a] is modified to learn from the experience of all vehicles in the
simulated traffic situation. The same policy neural network is used for controlling every
agent in the traffic situation, a technique which is known as parameter sharing.

• Extending MARL to model heterogeneous behavior (Section 5.5, [Sac+22a]): While
parameter sharing is a straightforward approach to learning a policy that models the
behavior of multiple agents, it implies that all agents behave equally when confronted
with the same situations. This is unrealistic when modeling human drivers with different
driving styles. To fix this, an approach to learning a flexible policy that can exhibit
different behaviors, depending on special preference inputs, is proposed.

• Reconstructing the reward function using Adversarial Inverse Reinforcement Learn-
ing (AIRL) [FLL18] (Chapter 6, [Sac+22b]): The previously mentioned MARL ap-
proaches maximize a manually specified reward function. As the reward function of
human drivers is unknown, this limits their usefulness for issuing accurate predictions
of a real-world traffic situation. To still be able to model real-world driver behavior
using the MARL idea, the AIRL [FLL18] algorithm is employed to reconstruct the

6

1.3 PUBLICATIONS

reward function from the dataset of real-world trajectories. To this end, the single-agent
AIRL algorithm is modified to handle the multi-agent problem formulated in this thesis.

• Training in fictional situations (Section 6.4.2): Similar to most real-world datasets,
the dataset used in this thesis contains many regular driving situations, but relatively
few rare events such as near-collisions. It is shown that additional training in fictional
situations, which are set up to include many critical driving situations, leads to more
robust policies with reduced collision rates. For this, the AIRL algorithm is modified
to reconstruct the reward function on the real-world dataset, but to train the policy in
complementary fictional situations.

• Comparison under equal conditions (Chapter 7): Finally, an extensive comparison of
different variants of all presented algorithms (single- and multi-step BC, Generative
Adversarial Imitation Learning (GAIL), AIRL) to learning a driving policy is carried
out. This allows for a direct comparison of the accuracy and robustness of the policies
as well as the training duration.

1.3 Publications

The central ideas lined out in this work have been published in [Sac+20b; Sac+21; Sac+22a;
Sac+22b] based on my own contributions as the lead author. Further, [Kon+21] was published
as the result of my supervision of a master thesis.

As the publications share a common simulation core that has been improved and extended
over time, all experiments presented in this thesis have been repeated with the most recent
implementation of the simulation. This is required for a fair comparison of the performance
of the different approaches under equal conditions in Chapter 7. Hence, most experimental
results of this thesis have not been published previously, but are in line with the results in the
associated publications.

The relation between the content of this thesis and previous publications is:

• Chapter 2 contains an extensive literature review, previously unpublished.
• Chapter 3 describes the simulation environment used in this thesis, first described in

[Sac+21] and used and extended in [Sac+22a; Sac+22b].
• Chapter 4 describes the idea of Behavioral Cloning and multi-step training. It is based

on [Sac+20b; Sac+21] and contains previously unpublished experiments on causal
confusion.

• Chapter 5 focuses on Reinforcement Learning. The idea of applying Multi-Agent Rein-
forcement Learning was published as the result from a master thesis that I supervised
[Kon+21]. An improved learning algorithm that is used in this thesis and an approach to
modelling heterogeneous driver behavior were later published in [Sac+22a]. This thesis

7

1 INTRODUCTION

further introduces a previously unpublished cost function and multiple experiments to
gain insight into the functioning of the RL algorithms.

• Chapter 6 is based on [Sac+22b].
• Chapter 7 compares all approaches to behavior modeling presented in this thesis and

was not previously published.

Further publications which I coauthored, and which do not play a major role in this thesis,
are:

• as the result of my supervision of different master theses [Vog+20; Lee+21],
• as the result of my co-supervision of a master thesis [Rad+23],
• as the result of my co-supervision of my “successor” as a PhD student, also working on

the topic of interacting predictions, [Kon+23],
• as the result of my collaboration with a colleague, whose research as the lead author

focuses on the planning task of automated vehicles, [Bey+20; Bey+21a; Bey+21b].

8

2 Fundamentals of Driver Behavior
Modeling

This chapter serves as a literature review on systems for modeling driver behavior to motivate
the architectural design decisions behind the proposed prediction approaches in the following
chapters. First, Section 2.1 introduces the central applications of driver behavior models,
derives the underlying assumptions of the proposed prediction approaches and formulates
requirements. Next, Section 2.2 discusses the core challenges of trajectory prediction. A
general problem formulation is stated in Section 2.3, and related works that address this task
are outlined in Section 2.4. Thereby, a special emphasis is laid on the representation of the
uncertainty in Section 2.5 and on the representation of the environment as the input of the
prediction model in Section 2.6.

2.1 Background: Applications

To motivate research on driver behavior modeling, this section introduces the major applica-
tions of driver behavior models: Behavior planning for an automated vehicle and behavior
simulation for the development and validation of automated driving functions.

2.1.1 Behavior Planning

The structure of an automated driving system can be separated into three consecutive parts
shown in Figure 2.1: “Perception - Cognition - Execution” (K.-H. Siedersberger, personal

Perception ExecutionPredict Plan

Perception Execution

Plan

Predict

objects,
map,
ego state

planned
trajectory

(a)

(b)

Cognition

Cognition

Figure 2.1: Behavior planning according to the Perception-Cognition-Execution scheme.
(a) Sequential prediction and planning block.
(b) Holistic planning and prediction block.

9

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

communication, October 2023). A model of the environment that contains all surrounding
objects perceived by current and past sensor inputs and the ego state is constructed in the
perception stage. This also includes external data, e.g., from digital maps. Based on this
information, the cognition system searches for a trajectory that balances certain criteria, e.g.,
low jerk, low acceleration, progress along the track, as well as staying on track and avoiding
collisions. Finally, the execution block is a controller that selects the appropriate actions
(e.g., steering and acceleration) to realize the planned trajectory. The cognition stage can be
executed in two different ways, depicted in Figure 2.1:

(a) Sequential planning: First predicting the evolution of the traffic situation, and then
planning a trajectory. This implies that the prediction of surrounding vehicles disregards
the planned actions of the ego vehicle, prohibiting maneuvers that require cooperation
of other vehicles.

(b) Holistic planning: Selecting a candidate trajectory for the ego first, and then predicting
how this would influence the other vehicles. This cycle repeats until a sufficiently good
trajectory is found. The resulting trajectory is the plan. The task of predicting the
situation conditioned on the own plan is referred to as conditional inference [Tol+21]
or hypothetical inference [TS19].

The “freezing robot problem” [TK10] illustrates the functional differences between the
approaches: Consider a highly interactive traffic situation, for example, when two lanes merge
into one. Being unable to conceive cooperation of surrounding vehicles, an automated vehicle
that implements a sequential approach might get stuck at high traffic densities. A holistic
approach is able to resolve these situations, as it can consider merging into a gap even if this
forces the rear vehicle to brake. As it models the influence of the ego on the rear vehicle, it
can plan cooperatively and minimize the discomfort not only for itself, but also for the other
vehicle. However, this ability comes at the high cost of having to predict the same situation
repeatedly, for each evaluated ego candidate trajectory. Practical implementations of behavior
planning algorithms such as [Bey+20; Bey+21a; Bey+21b; Hub+17] often evaluate thousands
of candidate trajectories, rendering this an expensive design choice.

As behavior planning is beyond the scope of this work, in the remainder an agnostic position
is assumed, requiring the developed behavior models to be compatible with either approach.
In the following, the combined prediction and planning module is denoted as the cognition
module. To be able to implement a holistic cognition module, the prediction model must
be capable of hypothetical inference, i.e., being able to consider the influence of the future
trajectory of the ego vehicle on the predictions of surrounding vehicles.

10

2.1 BACKGROUND: APPLICATIONS

Simulated Environment Cognition (Plan + Predict)

Actions

Simulated objects, map, ego state

Figure 2.2: Simulating the inputs for the cognition block and reacting to the planned actions

2.1.2 Behavior Simulation

One way to test an automated vehicle is to perform real-world test drives. However, this is
expensive, time-consuming, and errors are often not reproducible. Multiple authors argue that
billions of test kilometers are required to statistically assure that automated vehicles drive
more safely than human drivers [WW16; KP16]—and changes to the system require the
testing to start over again.

A realistic simulation offers the potential to substantially reduce the real world testing effort
[Win+16, Ch. 8]. Figure 2.2 depicts the sub-problem of simulating the environment of the
cognition module. The environment simulator generates the perception-outputs, i.e., the map,
ego state and other objects, and determines the simulated ego states according to the actions
by a kinematic model.

Today, popular automated driving simulation frameworks such as CARLA [Dos17; 22] and
SUMO [DLR; Lop+18] use manually formulated rule-based models to simulate the behavior
of surrounding vehicles. In a simulator study, Rock et al. [Roc+22] found that participants
rate the plausibility and interactivity of such models poorly. However, the development
of highly automated driving functions, especially cooperative behavior planners, requires
realistic behavior models of surrounding vehicles to ensure that the performance of the system
in the simulation is representative for its performance in the real world.

To this end, behavior models similar to those introduced in this work are used for simulating
the behavior of surrounding vehicles to compare the robustness of different behavior planning
algorithms to internal prediction model errors [Bey+21a]. Another model is used in [Bey+21b]
as both, the internal prediction model of the behavior planner and the simulation model for
the evaluation. Other recent works that target the realistic simulation of driver behavior with
learned models are presented in [Suo+21; Ber+21].

2.1.3 Related Tasks

Besides behavior planning and simulation, driver behavior models can be used for multiple
other applications, such as:

11

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

Figure 2.3: Exemplary traffic situation

• Intention Estimation: By predicting actions for multiple future options and comparing
them to the actually performed action of the vehicle, the intention of a driver can be
estimated. For example, [Sch+18c] combines a behavior model with a multiple model
unscented Kalman filter to estimate whether a vehicle is driving straight through an
intersection, or turning left or right.

• Risk Assessment [LVL14]: When the behavior model is employed to predict the future
trajectories of surrounding vehicles, these trajectories can be used to estimate the
criticality of a situation and possibly execute emergency maneuvers or issue a takeover
request to the driver.

• Ego behavior prediction for human-controlled vehicles: Significant mismatches between
executed and predicted actions can be used to identify edge cases in which the model
needs to be improved or where the driver makes a mistake.

2.2 Core Challenges of Trajectory Prediction

Consider the situation depicted in Figure 2.3, consisting of three agents, Blue, Green, and
Orange. Many challenges arise when predicting the future evolution of the situation:

1. Influence of road geometry: The future movement of all vehicles is typically restricted
by the road geometry, which therefore needs to be considered in the prediction.

2. Kinematic feasibility: Vehicle trajectories are subject to kinematic constraints
[Kon+15]. Making use of this knowledge can improve the prediction performance
[JDZ21].

3. Multimodality: Which path will Orange take? It is unclear whether it continues driving
in the roundabout, or whether it leaves at the next exit.

4. Traffic rules: If Orange continues in the roundabout, Blue and Green should respect its
right of way.

5. Interaction: Nevertheless, Blue could also decide to squeeze into the roundabout before
Orange, thereby forcing Orange to brake. Influences between vehicles can sometimes

12

2.3 GENERAL PROBLEM FORMULATION

be considered unidirectional, e.g., Blue influences Green, but not vice versa. However,
symmetric relations also exist, e.g., Orange influences Blue, but Blue also influences
Orange. This entanglement means that predictions cannot be made in sequence, e.g.,
first Blue, then Green. Rather, predictions need to be able to influence each other.

6. Driver characteristics: Beyond the uncertainty induced by the previous points, dif-
ferent driver characteristics, e.g., aggressiveness or attentiveness [Sad+18], have an
influence on the future trajectory.

7. Vehicle characteristics: Similar to the previous point, power, mass and shape of
vehicles can have an influence on the trajectory.

8. Combinatorics: The multimodality due to the road network and different possible
sequences of maneuver execution lead to a rapid growth of possible logical traffic
evolutions, when multiple vehicles are present in a situation.

9. Traffic participant class: Moreover, the type of the traffic participant, e.g., car, truck,
bicycle, pedestrian, has a strong influence on the prediction.

10. Aleatoric uncertainty [HW21; Var+22]: Even if one driver is perfectly characterized,
some uncertainty remains due to the inherent stochasticity of driver behavior, e.g.,
because of jitter in the reaction time.

Many of the above points are highly dependent on the interaction between vehicles. Thus,
this thesis is exclusively concerned with a holistic prediction of traffic situations rather than
separate predictions of individual vehicles. This is in contrast to most prediction approaches
presented in Section 2.4, but enables interaction-aware driver behavior models that can be
used for both, prediction (including hypothetical inference) and simulation of surrounding
vehicles. The models proposed in this work address points 1 to 6. Building on the concepts
introduced in this work, further extensions are conceivable to cover the remaining points, but
they fall outside the scope of this work.

Following most other works on trajectory prediction, this thesis excludes the perception task
from the prediction problem. This is advantageous, as it allows for the development of the
prediction module separately from the perception module. This enhances the versatility of
the approach and makes it compatible with various environment perception strategies. For
this reason, the proposed prediction approaches operate on detected objects and not directly
on sensor data. Moreover, the proposed models heavily rely on map information, which is
assumed to be available.

2.3 General Problem Formulation

Predicting the future evolution of a traffic situation can be formulated as a probabilistic
prediction problem, as for example proposed in [TS19; Rhi+19; Cas+20b; BDK20; Suo+21].

13

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

To this end, the future traffic situation is modeled as the realization y of a random variable y
and the goal is to obtain the conditional probability density1

p(y|x,M), (2.1)

or an approximation thereof. To accommodate all approaches that will be discussed in the
next sections into a common framework, let x be a representation of all dynamic information
available at the prediction origin, e.g., the current and past states of all traffic participants, and
letM contain all static information, e.g., the map. The random variable

y .=


y1

1 y2
1 · · · yN1

y1
2 y2

2 · · · yN2
...

...
y1
H y2

H · · · yNH


.= y1:N

1:H (2.2)

characterizes the positions of all N vehicles, at all H future timesteps. yjk is the random
variable of the position or the full state of the vehicle j at timestep k.

To simplify the notation, the absence of a superscript or subscript denotes all agents or
timesteps, i.e., yk = y1:N

k and yj = yj1:H . Similarly, x−P :0 describes the states of all traffic
participants from the past timestep k =−P to the prediction origin at the current timestep
k = 0. xk = x1:N

k is the joint random variable of all agent states at timestep k.

Clearly, the density (2.1) cannot be expressed in closed form as its sample space Ωy = RN×H

is high dimensional with many interdependencies between the components that arise as
an effect of the challenges outlined in the previous section—kinematic constraints, map
constraints, and interaction between vehicles. Thus, practical implementations of prediction
approaches simplify the problem by exploiting its structure in different ways, as described in
the following section.

An additional challenge arises when the situation prediction is conditioned on the fixed future
of one or more vehicles, typically the automated vehicle a. This problem of hypothetical or
conditional inference [TS19; Tol+21] can be formulated as

p(y1:N\a|x,M,ya = ya), (2.3)

where 1 :N \a denotes the set of all vehicles except for vehicle a. Such conditional predictions
are essential for the holistic behavior prediction and planning approach from Section 2.1.1.
The concept is illustrated in Figure 2.4.

1This work follows the convention to abbreviate p(y = y|x = x) as p(y|x). Occasionally, the long form is
used to highlight the importance of certain variables.

14

2.4 APPROACHES TO TRAJECTORY PREDICTION

(a) Unconditional prediction (b) Green’s plan: enter roundabout (c) Green’s plan: yield to Orange

Figure 2.4: Illustration of hypothetical inference: The green vehicle is the ego. (a) Green’s plan is
unknown at prediction time, leading to large uncertainty about the future position of
Orange as indicated by the confidence ellipse. If it is known that green either enters the
roundabout (b) or stops at the entrance (c), this reduces the uncertainty in the prediction
of Orange.

2.4 Approaches to Trajectory Prediction

Numerous approaches to trajectory prediction exists. The central differentiator between them
is the structure that is imposed upon the prediction problem (2.1). In line with Lefèvre et al.
[LVL14], this section mainly differentiates between physics-based approaches, maneuver-
based approaches and interaction-aware approaches.

Physics-based approaches assume that the future vehicle motion exclusively depends on
its past motion. In contrast, maneuver-based approaches focus on recognizing executed
maneuvers and predict their continuation, sometimes assisted by map knowledge. Finally,
interaction-aware approaches attempt to model the interaction between vehicles in the predic-
tion.

This thesis is mainly concerned with interaction-aware trajectory prediction via a rollout
of a driver behavior model, as described in Section 2.4.3.2. However, to shed light on
the large corpus of works concerned with trajectory prediction, the central ideas of other
approaches are discussed in the following. For other perspectives on the field, the reader is
referred to the recent surveys on motion prediction by Brown et al. [BDK20], Karle et al.
[Kar+22], Mozaffari et al. [Moz+22] and Huang et al. [Hua+22] and the literature review in
the dissertations by Schulz [Sch21] and Wissing [Wis20].

Domains Beyond physics-based models, most approaches to trajectory prediction are
domain specific. The two key domains, highway and urban settings, can further be divided:

Car-following has been studied at least since 1950 [TK13b, Ch. 10] with the goal of un-
derstanding traffic phenomena, such as the formation of traffic jams [THH00]. As these
approaches only consider the interaction between the target vehicle and its preceding vehicle
in a single-lane scenario, they are of limited use for the development of highly automated
vehicles. However, they can be adapted to highway scenarios by comparing the feasible

15

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

acceleration on each lane, and switching lanes to minimize the overall braking induced by
lane changes (MOBIL) [KTH07]. Many recent approaches directly predict driver behavior
on a multi-lane highway, e.g. [Kue+17; Len+17; Die+19]. Apart from these general models,
some works focus on specific scenarios, such as merging [YL13; Bou+20] or predicting
imminent lane changes [Sch+15a; Woo+17; MKA20; DBU21].

The urban domain requires higher modeling effort due to complex road geometries, additional
traffic rules and different types of traffic participants. Many works in this domain focus on
particular settings, such as intersections [Lie+12; SH14; Li+22] and roundabouts [Zha+17;
ZWN20]. These two scenarios are especially interesting, because they involve a high degree
of interaction between drivers. A wide range of models focuses on pedestrian prediction
[Rid+18], which is not separately addressed in the following review for brevity. Examples of
general urban prediction models are [CLU18; Sch+18b; Gao+20].

2.4.1 Physics-Based Models

Simple and popular physics-based models are the Constant Velocity (CV) and the Constant
Acceleration (CA) model, as well as the Constant Turn Rate and Velocity (CTRV) and
Constant Turn Rate and Acceleration (CTRA) model. They are often employed for short
term predictions, e.g., in tracking problems [SRW08]. As these models only consider the
current kinematic state of the vehicle, but neglect any environmental information, e.g., road
boundaries, their performance rapidly degrades for long-term predictions [Dju+20]. Most
physics-based models address none of the challenges outlined in Section 2.2, except for the
kinematic feasibility.

Formally, these models factorize the prediction problem (2.1) as

p(y|x,M) =
N∏
j=1

p(yj |xj) (2.4)

by assuming exclusive dependence of the future of each vehicle yj on its past xj , and ignoring
any interaction or map information. The prediction of each individual vehicle

p(yj |xj) = p(yj0|xj) ·
H∏
k=1

p(yjk|y
j
k−1) (2.5)

is typically further simplified by modelling yjk as the full target vehicle state, and recurrently
executing a physics-based, Markovian state-transition model p(yjk|y

j
k−1). The structure is

depicted in Figure 2.5. It is assumed that the initial state yj0 is contained in xj0. The formulation
(2.5) naturally lends itself to uncertainty propagation similar to a Kalman filter prediction step,
used by Ammoun et al. [AN09], who predict Gaussian uncertainty ellipses for each trajectory

16

2.4 APPROACHES TO TRAJECTORY PREDICTION

x1
0 y1

1 y1
2

x2
0 y2

1 y2
2x2

−1

x1
−1

x3
0 y3

1 y3
2x3

−1

Past
Present

(Prediction Origin) Prediction

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.5: Structure of physics-based prediction approaches: The next state of each vehicle is
predicted on the basis of all preceding states. The states of different vehicles do not
influence each other. Commonly, the Markov assumption is made, which means that each
state exclusively depends on its preceding state. In this case, the connections indicated by
the blue arrows are omitted. For clarity, only the start and end of the arrows are shown for
vehicle 2 and 3.

point. Uncertainty propagation in nonlinear systems can be performed using the unscented
transform, which is implicitly linearizes the system with a deterministic set of points around
the state estimate. This is commonly used inside the prediction step of the Unscented Kalman
Filter (UKF), e.g., by Tran et al. [TF13]. Alternatively, uncertainty propagation in highly
nonlinear systems with non-Gaussian random densities can be simulated via Monte Carlo
methods, by predicting the evolution of a set of stochastically sampled particles, for example
used by Althoff et al. [AM11].

Some approaches also propose to learn a prediction model using the independent prediction
problem formulation (2.4). This enables the use of more complex, non-Markovian models.
For example, Wiest et al. [Wie+12] describe the past speed and heading angle as a Chebyshev
polynomial, and learn the parameters of a Variational Gaussian Mixture Model (VGMM)
that predicts the polynomial coefficients of the future trajectory, given the past trajectory
coefficients, thereby sidestepping the Markovian assumption (2.5) and allowing the model
to leverage long-term trends in the trajectory for the prediction. Another example is Zyner
et al. [ZWN20], who predict a Gaussian mixture density of future positions, given a sequence
of past states (position, speed and heading). By using a Recurrent Neural Network (RNN),
which aggregates information in a hidden state, the Markov assumption is bypassed. As
the training data is limited to few similar sized intersections, the model implicitly learns the
road layout, thereby allowing multiple distinct path modes to emerge in the prediction, e.g.,
turning right or going straight at the intersection. This implicit representation of a map is
made explicit by the approaches in the next category, maneuver-based models.

17

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

2.4.2 Maneuver-Based Models

The idea of maneuver-based models is to determine the probability of different maneuvers
mj , i.e.,

p(mj |xj ,M). (2.6)

Typically, the set of maneuvers Ωmj is restricted to few discrete elements, for example, going
straight through an intersection, turning left, or turning right [TF13; TF14; Rei22]. In urban
scenarios, the mapM usually contains important information for the classification. As a
consequence, each vehicle often has an individual set of possible maneuvers Ωmj as opposed
to a universal set of maneuvers Ωm that is valid for all vehicles.

A common method to realize the maneuver classification (2.6) is the use of Hidden Markov
Models (HMMs) [SH14; DRT18]. For this, a maneuver conditional generative model
p(xj |mj ,M) is constructed using the Baum-Welch algorithm. The learned model allows for a
direct estimation of the likelihood of an observed trajectory belonging to each maneuver class.
Alternatively, the classification can be performed using a discriminative Long Short-Term
Memory (LSTM) neural network trained to directly predict the probability of a maneuver,
e.g., [Zyn+17; Vog+20]. While both, HMM and LSTM enable updating of the estimated
maneuver probabilities as new observations arrive, [Zyn+17] and [Vog+20] alternatively
experiment with single-shot classification based on a fixed number of historical observations
using standard feedforward neural networks. In a similar spirit, Zhao et al. [Zha+17] use a
Support Vector Machine (SVM) to predict the probability of a driver leaving a roundabout at
the next exit.

Optionally, the future trajectory of a vehicle can be predicted according to a maneuver-
conditional prediction model

p(yj |xj ,mj ,M). (2.7)

The prediction scheme follows the independent modelling of all vehicles as in (2.4). Moreover,
these approaches naturally handle the multimodality induced by the road network via the
maneuver class mj . The resulting full prediction

p(yj |xj ,M) =
∑

m∈Ωmj

p(yj |xj ,mj =m,M)p(mj =m|xj ,M) (2.8)

is obtained by marginalizing out the maneuvers, which leads to a mixture of trajectories of
likely maneuvers, e.g., [Wie+13; Xie+18]. Alternatively, (2.7) can be used to simply predict
the trajectory of the most likely maneuver, e.g., [TF13; DRT18].

To realize the conditional maneuver prediction (2.7), [DRT18] extend the idea of [Wie+12],
and use a VGMM to predict the coefficients of a Chebyshev polynomial that represents the
future trajectory, given the past coefficents. To model maneuver dependency, one VGMM is

18

2.4 APPROACHES TO TRAJECTORY PREDICTION

learned per maneuver. A similar idea is proposed in [Rei22], where m represents uncertain
target positions that are heuristically generated from a map. The maneuver-conditional
trajectory prediction (2.7) is implemented using Bézier curves that smoothly connect the
current vehicle state to its target positions.

Instead of separately detecting the maneuver and predicting the conditional future trajectory,
the problem can also be addressed jointly. For this, [Xie+18] implement an Interacting
Multiple Model Kalman filter, which combines maneuver-specific prediction models with a
Markov chain that models the transition probabilities between different maneuvers. Similarly,
[TF13] learn the parameters of one Gaussian Process (GP) per maneuver, which is then
converted to a stepwise, maneuver-conditional transition model that can be employed in an
UKF. At execution time, the likelihood of the observation stemming from each maneuver
specific GP is evaluated, and the trajectory is predicted according to the most likely maneuver
GP. In a later work, [TF14] instead use a particle filter for the trajectory prediction, which
represents the maneuver-induced multimodality via a set of particles.

Rehder et al. [RK15; Reh+18] pick up the idea of marginalization (2.8) by representing the
uncertainty about the goal that a pedestrian wants to achieve in the conditional variable mj .
In [RK15], the authors describe goals in an unstructured map as a Gaussian mixture and
update the estimated likelihood of each component with a particle filter, as new observations
become available. In [Reh+18], the goal is predicted from a sequence of camera images,
using a combination of a Convolutional Neural Network (CNN) and a LSTM network.
Interestingly, both works proceed to use a probabilistic planning algorithm approach towards
the estimated goals to implement the goal-conditional trajectory prediction (2.7). In the
context of pedestrian prediction, another goal-directed approach to trajectory prediction has
been explored by Particke et al. [Par+18b], who construct multiple potential fields towards
potential goal points and use a multi-hypotheses Kalman filter to estimate the intention of
pedestrians and predict their future trajectories.

A deep learning approach to the maneuver-based vehicle trajectory prediction is proposed by
Zyner et al. [ZWN20], who train a network to directly predict the multimodal distribution
p(yj |xj). The network outputs are the parameters of a Gaussian mixture density that models
the future positions of the target vehicle. Reversing the logic of most other works in this
section, the authors consolidate the resulting density in a second step to predict the underlying
maneuver. For this task, a clustering algorithm that estimates p(mj |yj) is employed.

Separately predicting individual driver maneuvers does not allow for a coherent long-term
prediction of a situation, as the interaction between vehicles is disregarded. In a highway set-
ting, Deo et al. [DRT18] thus implement a maneuver-based prediction of multiple trajectories
for each individual vehicle, but filter out unlikely combinations of predicted trajectories of
different vehicles prior to outputting the predictions. The likeliness of a pair of trajectory

19

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

predictions is determined inversely proportional to the minimum distance between the trajec-
tories to reflect that drivers are collision averse. This notion of implausible combinations of
predicted trajectories is a primitive form of interaction between predictions and leads to the
category of interaction-aware models.

2.4.3 Interaction-Aware Models

All interaction-aware models share one central property: Apart from the past states xj of
the target vehicle, they make use of additional information concerning surrounding vehicles
contained in x. Typically, map informationM is also factored in. Thus, these approaches
have access to all information that is required to make a holistic situation prediction rather
than individual vehicle predictions.

Since the proposal of the category of interaction-aware approaches by [LVL14] in 2014, many
new works have been published. This encourages a further differentiation between passive,
reactive and proactive interaction awareness in this subsection.

Passive approaches use the information contained in x andM to make predictions for each
vehicle individually, neglecting potential future interaction between the predicted trajectories.
This thesis follows the terminology of Tolstaya et al. [Tol+21], who label these approaches
as passive behavior prediction. To understand the implications, consider again the situation
in Figure 2.3. The dynamic state of Orange indicates that Blue should wait at the entry
until Orange has passed. However, it is currently unclear when this will be: Orange could
either leave the roundabout, enabling Blue to enter right away. Orange could also remain
in the roundabout, thereby forcing Blue to wait until it has passed. The future trajectory
of Blue is clearly highly dependent on Orange; neglecting this influence forces a diligent
predictor to specify a large uncertainty about Blue’s future position. This illustrates that
passive approaches are incapable of issuing coherent long-term predictions of the situation,
because the prediction of one vehicle does not react to the prediction of another vehicle.

Reactive approaches enable interacting predictions by formulating a single-step prediction
model that is executed repeatedly with small timesteps, e.g., ∆t = 0.2s. Starting from the
prediction origin, k = 0, the information from the previous prediction step is an input to the
prediction of the next timestep. Thus, predictions of individual vehicles are able to react to
each other, which explains the name of this category. In the above example, Blue would enter
the roundabout as soon as it perceives that Orange leaves it, or when Orange has driven past
Blue. Formulating the single-step prediction model is a challenging task and lies at the heart
of this thesis. It can be interpreted as a reactive control policy that is applied by every agent
in a simulation of the situation to produce the predicted, interacting trajectories. Hence, these
approaches are also referred to as prediction by forward simulation [BDK20; Sch21].

20

2.4 APPROACHES TO TRAJECTORY PREDICTION

x1
0 y1

1 y1
2

x2
0x2

−1

x1
−1

x3
0x3

−1

Past
Present

(Prediction Origin) Prediction

.

. . .

. . .

Figure 2.6: Structure of passive interaction-aware approaches: The entire trajectory of one vehicle is
predicted based on the past states of itself and of all other vehicles. The number of past
states leveraged for the prediction varies between approaches. The predicted trajectory
neither influences predictions of other vehicles nor is it influenced by predictions of
others. For the sake of clarity, only the predictions of vehicle 1 are shown, even though
analogous dependencies exist for all other vehicles.

Finally, proactive approaches go even further by using a proactive policy for every agent.
These approaches interpret the prediction problem as a Partially Observable Stochastic Game
(POSG) [BDK20], or a joint optimization problem. The solution (prediction) is the set of
trajectories that minimizes a cost function. These approaches can also be interpreted as
prediction by joint planning, because they employ a planning algorithm for every agent to
produce the trajectory prediction. Returning to the example, Blue might evaluate its options
and come to the conclusion that strongly accelerating and squeezing into the roundabout
before Orange possibly arrives might be its best option in this situation. Thereby, Blue expects
that Orange brakes slightly and assumes that this is safe and tolerable for Orange.

As most recent publications on trajectory prediction fall into one of these three subcategories
of interaction-aware behavior prediction, the following subsections introduce representative
works that fall into these categories.

2.4.3.1 Passive Interaction-Awareness

The simplest form of modelling interaction when predicting the future situation y is again
to factorize the problem into individual predictions of each agent by making the conditional
independence assumption

p(y|x,M) =
N∏
j=1

p(yj |x,M), (2.9)

which is visualized in Figure 2.6. The central difference to truly independent predictions

21

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

according to (2.4) is the dependence of each individual prediction on the dynamic states of all
vehicles x instead of the individual dynamic state xj of the target vehicle.2 The prediction
p(yj |x,M) of the future trajectory of each target vehicle yj is thus carried out independently.
Due to this fact, these approaches lack the ability to make conditional predictions according
to (2.3), and are thus only suitable for sequential prediction-and-planning architectures
(Section 2.1.1). They cannot be used for holistic planning or behavior simulation.

As the direct formulation of the prediction model is difficult, all surveyed approaches following
this scheme resort to deep learning methods. Despite the shortcomings of the conditional
independence assumption, [Ett+21] and [Tol+21] subsume that many recent works follow
this passive behavior prediction approach, as the metrics defined by the popular behavior
prediction benchmarks by Lyft [Hou+20], nuScenes [Cae+20] and Argoverse [Wil+21]
exclusively evaluate predictions of individual agents. Notable exceptions from this are the
Interaction [Zha+19] and Waymo [Ett+21] datasets.

A prime example of a passive prediction approach is proposed by Djuric et al. [Dju+20], who
use a gridmap-like birds-eye-view rendering of the surroundings of each target vehicle to
encode the dynamic state x and the mapM. The information is then decoded by a CNN,
and fed into a LSTM network, which directly predicts the average expected future trajectory,
i.e., E

{
yj |x,M

}
. Optionally, the authors propose to predict the uncertainty as standard

deviations around each future trajectory point.

Another well-known representative of this approach is VectorNet [Gao+20], which proposes
a new graph-based input representation that is detailed in Section 2.6. Based on the map and
past surrounding vehicle trajectories, the most likely future trajectory of one target vehicle is
predicted, including its uncertainty.

Handling Multimodality Cui et al. [Cui+19] extend the work of [Dju+20] to predict
multiple trajectory hypotheses per vehicle, to represent the multimodal nature of the problem,
e.g., when it is unclear whether a vehicle will turn right or left at an intersection. Given the
situation representation x, the model is set up to directly output three future trajectories for
each target vehicle. Training is performed in a Winner-Takes-All (WTA) [GBK12; Mak+19]
fashion, i.e., only the distance between the ground truth and the closest predicted trajectory
is minimized. This ensures that the resulting predictions are diverse, and cover multiple
disparate options rather than collapsing into the single most likely trajectory prediction
[Lee+21; Hof+22].

WTA training and other approaches that directly generate a set of representative samples
suffer from the problem of mode collapse: The predictions cover some modes of the true

2This does not necessarily mean that the prediction of each vehicle uses the full dynamic state x of all vehicles
in the situation. Often, the prediction only depends on the most recent state estimates of a limited number of
surrounding vehicles. For simplicity and generality, this is not explicitly articulated in the following.

22

2.4 APPROACHES TO TRAJECTORY PREDICTION

distribution, but ignore others. Elaborated training schemes to avoid this issue are proposed in
[AB17; Sri+17; Cha+19; Mak+19]. Alternatively, the multimodality can be handled outside
the model by introducing a new conditional random variable mj , that can assume any value
from its sample space Ωmj , and splitting the prediction problem into

p(yj |x,M) =
∑

m∈Ωmj

p(yj |x,M,mj =m)p(mj =m|x,M). (2.10)

The resemblance to the maneuver-based formulation (2.6) to (2.8) is no coincidence, as mj

can encode a maneuver. One example of a combination of a passive interaction-aware and
maneuver-based prediction is proposed by Deo et al. [DT18] in a highway setting, where a
LSTM network encodes the states of all vehicles, and a pooling layer aggregates information
of the relevant vehicles around each target vehicle. Based on this encoding, one neural
network estimates the maneuver probabilities p(mj |x,M) for six maneuver classes, e.g.,
“brake and change to the right lane”. A second network predicts a maneuver-conditional
future trajectory p(yj |x,M,mj). Marginalization according to (2.10) yields the multimodal
trajectory prediction for each target vehicle.

Zhao et al. [Zha+21] apply the idea of Rehder et al. [RK15] of goal-directed prediction
to vehicle trajectory prediction. The authors propose to generate multiple potential goal
states that are spread over a large area of the map for each target vehicle in the first step.
Then, trajectories are predicted for each goal state, and finally ranked by their likelihood.
Further examples of the separation of goal or anchor prediction and goal-conditional trajectory
prediction are proposed in [Cha+19; Zha+20; Gil+21].

The problem of mode collapse can also be addressed with a generic, uninterpretable latent
variable mj using a Conditional Variational Auto-Encoder (CVAE) [KW14], as proposed by
Hong et al. [HSP19]. In their work, the authors train a CVAE, which generates trajectories
via the concatenation of an encoder and a decoder neural network. A trajectory prediction
is generated by encoding the scene context into a latent space, sampling one realization of a
low-dimensional random variable mj and then executing the decoder with the encoded scene
context and the sample of mj as inputs. A diverse set of predictions is generated by repeating
the process for different realizations of mj .

Modeling Interaction By imposing the conditional independence assumption (2.10), all
approaches in the previous paragraphs predict the trajectory of each target vehicle indepen-
dently. Most presented approaches use a single-shot prediction architecture [Tol+21], i.e., the
model directly outputs the full trajectory of an agent, or the parameters of a distribution that
characterizes it. The limitations of passive behavior prediction have been discussed in the
introduction of Section 2.4.3. The approaches presented in the following adapt the passive
single-shot architecture to model interaction between predictions.

23

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

Kim et al. [KKC20] propose to perform the prediction repeatedly. The first iteration predicts
the trajectory of each target vehicle independently. Successive iterations use the prediction
of previous iterations as additional input, thereby enabling interaction between the predicted
trajectories. A similar idea is proposed by Lee et al. [Lee+17], where multiple individual
trajectory predictions per target vehicle are generated using a CVAE first. In a second step,
each prediction is ranked according to its likelihood given the prediction of all other vehicles.
Moreover, the model also iteratively refines each individual trajectory prediction, given the
context of the other predictions.

Another line of work is presented by Tolstaya et al. [Tol+21]. The central motivation is to
make predictions of surrounding vehicles that are conditioned on the planned trajectory of
the automated vehicle, as formally defined in (2.3). The prediction is realized by extending
the single-shot model from a previous work [Cha+19] with the planned future trajectory of
the automated vehicle as an extra input. Thus, all predictions are able to interact with the
automated vehicle, but do not interact with each other. The resulting prediction model can be
used in a holistic planning approach.

2.4.3.2 Reactive Interaction-Awareness

The idea of iteratively refining the predictions, as proposed by [Lee+17; KKC20], is a first
step towards modeling the interaction between vehicles at prediction time. However, many
interaction-aware approaches structure the problem differently. The central idea is that the
trajectory of each agent emerges as a result of its behavior. Therefore, these approaches
establish a single step behavior model that predicts the next action of an agent, given its
observation of the current situation. The prediction of a situation is obtained by recurrently
simulating the observations of each agent, the ensuing actions according to the behavior model,
and the state transitions as a consequence of the actions. This scheme enables interaction
between predicted trajectories, because agents are represented in each other’s observations.
Examples of this approach can be found in car following [THH00; KTH09], highway [KTH07;
WRK16; MWK17; Len+17], and urban scenarios [Sch+18b; Sch+19].

Formally, the task of predicting the future situation is thereby factorized into separate time
steps

p(y|x,M) =
H∏
k=0

p(yk+1|x,y1:k,M), (2.11)

with the single-step prediction

p(yk+1|x,y1:k,M) =
N∏
j=1

p(yjk+1|x,y1:k,M) (2.12)

24

2.4 APPROACHES TO TRAJECTORY PREDICTION

x1
0 y1

1 y1
2

x2
0 y2

1 y2
2x2

−1

x1
−1

x3
0 y3

1 y3
2x3

−1

Past
Present

(Prediction Origin) Prediction

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.7: Structure of reactive interaction-aware approaches: The predicted next state of each
vehicle depends on the previous state of itself and of all other vehicles. As the prediction
unfolds step by step, predicted vehicles can react to the prediction of their surrounding
vehicles, thereby enabling true interaction between them. Conditional inference can be
performed by fixating the trajectory of one agent to the queried trajectory, and executing
the prediction for all other vehicles. Through this mechanism, the behavior planner of an
automated vehicle can assess how the situation would evolve if it decides for one
trajectory. Optionally, the predictions can be based on more than one past state, which is
omitted in the figure.

being carried out independently for each agent j. A further common theme is the assumption
of a Markovian prediction model [Len+17]

p(yjk+1|x,y1:k,M) = p(yjk+1|yk,M), (2.13)

i.e., each future state yjk+1 depends exclusively on the directly preceding states yk of all
vehicles. To simplify the notation, it is assumed that for the initial prediction step p(y1|y0,M),
all relevant information from x is encoded in y0. The emerging structure is illustrated in
Figure 2.7.

Formulating a prediction model now amounts to describing the single-step transition density
p(yjk+1|yk,M) for the jth target vehicle. The joint predictions of each agent give the next
situation state (2.12), and recurrent application of the situational single-step prediction (2.12)
yields the full prediction of the future situation (2.11). Often, p(yjk+1|yk,M) is further
decomposed into observation model, action model, and state transition model, i.e.,

p(yjk+1|yk,M) =
∫
a∈A

∫
o∈O

p(yjk+1|y
j
k,a

j
k = a)p(ajk = a|ojk = o)p(ojk = o|yk,M)doda

(2.14)
with

▶ ajk action of agent j at timestep k (random variable),
▶ ojk observation of agent j at timestep k (rand. var.),
▶ p(ajk|o

j
k) behavior model,

25

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

▶ p(ojk|yk,M) observation model of agent j,
▶ p(yjk+1|y

j
k,a

j
k) (kinematic) state transition model,

▶ A action space; sample space of ajk,
▶ O observation space; sample space of ojk.

For a coherent notation with Reinforcement Learning (RL) literature [SB18], the behavior
model is henceforth denoted as the policy

π(ajk = ajk|o
j
k = ojk)

.= p(ajk = ajk|o
j
k = ojk).

Due to the conditional dependency between the components of y induced by (2.11) to (2.14),
no general closed form description of an individual trajectory yj can be given. To generate
predictions, practical implementations of this approach instead resort to a forward simulation
scheme, described in Algorithm 1. Thereby, the prediction can be made in a deterministic
manner by propagating only the mean state E{yk}. Alternatively, it is possible to perform
a Monte Carlo simulation by using a set of particles that represent the uncertainty in the
initial situation state y0, and that further reflect process uncertainty by sampling from the
observation, behavior, and kinematic state transition model.

Algorithm 1 Prediction by simulation, adapted from [BDK20]
1: for timestep k = 0..H do
2: for agent j = 1..N do

ojk← p(ojk|yk = yk,M) ▷ Sample observation o according to observation model
ajk← π(ajk|o

j
k = ojk) ▷ Sample action a from policy π

yjk+1← p(yjk+1|y
j
k = yk,ajk = ajk) ▷Apply state transition model to deter-

mine next agent state yjk+1.
3: end for
4: end for

The core challenge of reactive interaction-aware approaches and the central topic of this
thesis is the formulation of a behavior policy π. The following paragraphs discuss different
approaches to obtaining the behavior model.

Manual Formulation Early works on behavior modeling were originally targeted at mi-
croscopic traffic simulations to study the formation of traffic jams, e.g., [THH00]. Thereby,
the scheme from Algorithm 1 is applied with a manually formulated, deterministic behavior
model in a car following scenario. The proposed Intelligent Driver Model (IDM) observes the
current speed of the target vehicle and its preceding vehicle, as well as the bumper-to-bumper
distance between both. Based on this information, it predicts the acceleration of the target
vehicle, such that it strives to maintain a velocity-dependent safety distance, or accelerates
until a desired speed is reached. The model and its extensions [THH00; KTH07; KTH09]

26

2.4 APPROACHES TO TRAJECTORY PREDICTION

were later adapted for prediction purposes in the behavior planning of automated vehicles,
for example, [Eve+16; LKK16; Bey+19]. Further popular examples of manually specified
car-following behavior models for microscopic traffic simulation are the Gipps model [Gip80],
and the Krauß model [KWG97].

Formulating models for urban traffic situations is clearly more demanding: Schulz et al.
[Sch+18b] establish a set of rules to describe the influence of the road geometry, preceding
vehicles, conflicting vehicles, speed limits and vehicle dynamics on the behavior. Moreover,
similar to (2.7), multimodality is addressed by introducing a hidden route r and maneuver m
variable for each agent, and formulating a behavior model π(a|o,r,m) that depends on these.
The route variable defines the path that the agent takes through the road network, e.g., turning
left at the next intersection, and the maneuver variable describes the interaction with other
vehicles, e.g., taking or giving right of way at an intersection. These intentions influence the
selected actions a. By making predictions for multiple intentions, and tracking their accuracy
over time using a Particle Filter (PF), the unknown intentions of surrounding drivers can be
inferred. A later work [Sch+18c] proposes replacing the PF with a multiple model UKF to
improve the accuracy or runtime of the intention inference.

Learning Driver Behavior Models: Behavioral Cloning Learning a behavior model from
observed driving behavior instead of manually formulating it has many advantages: The
manual effort is reduced, the model can be easily updated as new data becomes available,
and it can be extended to handle various situations, given appropriate training data. Thus, as
a followup to their manually formulated urban driver model, Schulz et al. [Sch+19] train a
neural network policy as a replacement and conclude that “even simple feed-forward models
are able to outperform the hand-tuned rule-based model”.

The technique used by [Sch+19] and many others [WRK16; MWK17; Len+17] for training
the policy is known as Behavioral Cloning [Arg+09; Fin+16] and dates back to the early days
of automated driving [Pom89]. The core idea is to formulate the policy learning problem as a
supervised learning problem. Given a dataset of trajectories, the policy neural network learns
the mapping from (simulated) observations to actions. A detailed problem formulation and
description of related work is given in Chapter 4.

BC inherits the limitations of supervised learning: The policy only yields reasonable actions
for observations that are similar to the training dataset observations. Ross et al. [RB10] argue
that this leads to a fundamental problem: As the policy is executed recurrently, and thereby
influences its future observations through its actions, the distribution of observations during a
simulative rollout according to Algorithm 1 differs from the distribution of observations on
the fixed training dataset. This can lead to accumulating errors. For example, the policy may
wrongly steer a vehicle towards the roadside. Having never seen how to recover from this in
the training data, the policy has not learned to correct its fault, possibly steering the vehicle off

27

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

the road. This problem has widely been acknowledged [Fin+16; dHJL19] and is the central
motivation of this thesis to explore different approaches to learning behavior policies. It is
denoted as covariate shift [Spe+21], because the distribution of the input variable, commonly
known as the covariate, changes between training and execution.

Reinforcement Learning Instead of learning a policy by imitation, the goal of RL is to
find a policy that maximizes a manually defined reward function through interaction with
a simulated environment [SB18]. The learning procedure consists of the agent repeatedly
executing an initially random policy in the environment, similar to Algorithm 1, thereby
collecting experience on which actions lead to high cumulative rewards. The successful
actions are then reinforced, whereas the actions with low rewards are avoided. A successful
policy is the result of iterative improvement in this way. The theoretical details are deferred to
Chapter 5.

Many works use RL methods in an automated driving context, because it enables learning a
policy through pure interaction with the simulated environment without the need to explicitly
formulate an environment model. Some examples address tasks from highway driving
[HWL20], merging [Bou+20], navigating occluded intersections [Ise+18; Kam+20] to camera-
based end-to-end control of an automated vehicle [Ken+19]. The goal of these works is to
learn a driving policy to control an automated vehicle. In contrast, the foreseen application of
RL in this thesis is to model the behavior of surrounding vehicles for prediction or simulation
purposes.

RL eliminates many limitations from BC: No training data is required, the policy can be
trained in arbitrary simulated situations and is shaped by the reward function to comply with
its requirements, e.g., to avoid collisions. On the other hand, this implies that the link to
real world is cut and that it is hard to obtain policies that resemble the behavior of human
drivers. To do so, one must assume that humans, too, act to maximize a subconscious reward
function that encodes their driving preferences: Making progress towards their destination
while having low longitudinal and lateral accelerations and driving safely. While easy to
verbalize, it involves a lot of manual effort to formulate a mathematical reward function, as it
is unclear how exactly these aspects should be rewarded and what their relative importance is
[FLA16; Nau+20].

Inverse Reinforcement Learning is a principled approach to automatically reconstruct the
reward function of human drivers based on a dataset of real-world trajectory demonstrations.
The procedure works as follows: For an initial guess of a reward function, expressed as a
weighted sum of reward terms, a policy is learned using a standard RL algorithm. Then,
the difference between the trajectories from the policy and the demonstrations is evaluated.
Based on this difference, the weights of the reward function are adapted, and a new policy is

28

2.4 APPROACHES TO TRAJECTORY PREDICTION

trained. This repeats until the policy produces trajectories that are reasonably similar to the
demonstrated trajectories. A more thorough description of the approach along with related
works is given in Chapter 6.

For the purpose of behavior modeling, Inverse Reinforcement Learning (IRL) methods
combine the benefits of BC and RL: The training goal is the imitation of driver behavior,
similar to BC, and leads to policies that can accurately predict or model human behavior.
The indirection of reconstructing a reward function and using RL to train a policy of this
guessed reward function implies that the training is not restricted to the trajectories from the
dataset. Instead, the simulation that is used during RL training can explicitly put weight on
important situations that rarely occur in the real world, such as near-collisions. Being faced
with these situations often means that the policy learns an appropriate reaction. Moreover,
the reconstructed reward function can be used to train the policy in fictional situations, again
augmenting the experiences that the policy makes during training and improving its ability
to generalize to unseen situations. A third advantage of IRL is the ability to create auxiliary
training goals beyond pure imitation, such as penalizing vehicles for leaving the track or
colliding.

Other Approaches Some works develop the same intuition of (2.11) and (2.12), that the
prediction needs to be decomposed into stepwise predictions of individual agents, from a deep
learning perspective. Recurrent Neural Networks (RNNs) [Zha+22] are a natural choice for
these approaches, as they allow for modelling such sequential processes. As the general RNN
architecture is not well suited for modeling long term effects, recent works employ specialized
RNN architectures, mainly LSTM cells and Gated Recurrent Units (GRUs) [Zha+22].

Since these deep learning based approaches have no notion of a meaningful observation model,
another method to share information between agents is required to enable their interaction.
In a pedestrian context, Alahi et al. [Ala+16] thus propose social pooling, whereby past
trajectories of each pedestrian are encoded by a LSTM network to a hidden state. A social
pooling layer aggregates hidden states from spatially close pedestrians. The prediction model
leverages this aggregated information to predict the next position of each pedestrian. The
trajectories are predicted by repeated execution of this scheme. The information from the
social pooling layer enables the predictions to interact, e.g., by avoiding close encounters
and making way for others. Gupta et al. [Gup+18] improve the pooling mechanism and
combine it with Generative Adversarial Networks (GANs) [Goo+14] to enable the prediction
of multimodal future trajectories.

The idea of social pooling is picked up by Lee et al. [Lee+17] and Deo et al. [DT18] for
predicting vehicle trajectories. However, while the original social pooling paper [Ala+16]
proposes a stepwise rollout of the model, enabling a social pooling operation during every
step, [Lee+17] and [DT18] only pool once at the prediction origin and then proceed to

29

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

directly predict the future trajectories of all agents independently, effectively preventing true
interaction between the predictions. Despite the use of the social pooling mechanism, these
approaches thus fall into the category of passive interaction-awareness.

Tang et al. [TS19] introduce a different mechanism to share information between agents during
a stepwise rollout of a prediction model. A joint world state is predicted step by step. To this
end, one GRU network is instantiated for each agent. Each GRU receives the perspective
of the corresponding agent on the rasterized map, including the encoded information on
surrounding agents. Based on this information, the GRU predicts the parameters of a normal
distribution that characterizes the next position of the agent. To enable the model to express
multimodality due to path uncertainty, an additional discrete latent variable is introduced per
agent, following the idea of (2.10).

Similarly, Rhinehart et al. [Rhi+19] roll out a RNN iteratively to predict the next position of
each traffic participant, given the previous predictions of all surrounding vehicles. Other actors
are directly represented via their relative positions in a top-view LiDAR gridmap, centered
around each target vehicle. As the trajectory prediction is the result of the concatenation
of multiple single-step networks, the training error can be directly backpropagated through
multiple timesteps, circumventing the covariate shift problems discussed on page 28 of the
BC approach. To represent uncertainty, the stepwise model is implemented as an invertible
generative model that learns to transform samples from a normal distribution to the potentially
more intricate target distribution of the prediction. One central requirement of the authors is the
ability to condition the predictions on the planned trajectory of an automated vehicle, enabling
the deployment in a holistic planning and prediction scheme as described in Section 2.1.1.

2.4.3.3 Proactive Interaction-Awareness

By design, behavior models that follow the scheme in Algorithm 1 are purely reactive, as
agents do not reason about the future influence of their actions on others. The behavior model
can be interpreted as a driving heuristic that implicitly anticipates the future traffic situation
and acts accordingly. For example, agents in our reactive RL based method [Sac+22a]
carefully approach the entry of a roundabout when it is unclear whether they can enter, but
enter swiftly when a sufficiently large gap is encountered.

The limit of this implicit anticipation is reached when agents are faced with situations that are
very different from the training situations. For example, Hoel et al. [HWL20] train a policy
in regular highway scenarios using RL, but challenge it with wrong-way drivers at test time.
While standard RL algorithms are unable to handle such domain shifts, the authors propose
an approach to identify out-of-training situations and use safe actions (brake hard) in these
cases. However, while braking hard is safe for the specific scenario, it is not a universally safe
action, e.g., when a rear vehicle is closely following.

30

2.4 APPROACHES TO TRAJECTORY PREDICTION

To make plausible predictions even in untrained situations, the idea of proactive interaction-
awareness is to use behavior planning algorithms to plan for others, and use this plan as a
prediction of their future trajectory. Compared to reactive behavior policies, true planning
algorithms can flexibly adapt to unseen situations, because they explicitly anticipate the
evolution of the traffic situation. This leads to a joint optimization problem among the ego
vehicle and all surrounding agents, requiring a game-theoretic solution paradigm [BDK20].
The solution is a joint plan that is optimal for every agent. The joint plan can be interpreted as
a realization of y, the future traffic situation.

Most of the works discussed in the following are not explicit approaches to prediction, but
rather address the prediction problem as a by-product of a behavior planning algorithm. The
applications range from highway driving [LKK16; Sad+18; Li+18; Fis+19; Bur+22], merging
[GS19; Bou+20], planning overtaking maneuvers [Sch+17b], to unsignalized intersections
[Sad+18; Pru+19] and roundabouts [Pru+20].

All approaches that follow the holistic planning and prediction scheme described in Sec-
tion 2.1.1, i.e. that plan not only with respect to the cost function of the vehicle in question,
but also with the cost imposed on others, can be interpreted as approximate solution methods
for a Partially Observable Stochastic Game (POSG) [BDK20]. Briefly, they are partially
observable, because of limited perception of surrounding vehicles and their intentions, and
they are stochastic if an agent cannot manipulate the world state deterministically. A formal
definition is given in [BDK20]. Solution approaches to POSGs also go by the name of
cooperative behavior planning.

With many agents and continuous observation and action spaces, finding the optimal solution
of the POSG quickly becomes computationally intractable [Fis+19]. Common approaches
to simplifying the problem are to consider only a limited number of interacting vehicles
[YL12; LKK16; Sad+18; Pru+19; Fis+19; Bur+22], using only few discrete actions [Pru+19;
Pru+20] or a high-level problem formulation that enforces a limited number of observations
and actions [Oyl+16; LKK16; Li+18; GS19; GS20].

An elegant combination of high- and low-level planning is proposed by Fisac et al. [Fis+19]
and Schulz et al. [Sch+17b], where a long-term strategic goal, e.g., merging in front of or
behind an approaching vehicle, is the result of a high-level plan, and the concrete trajectory is
the result of an ensuing low-level plan. The central advantage of this hierarchical problem
formulation is the ability to solve the joint POSG problem in a reduced high-level action
space, and to determine tangible trajectories individually in a low-level space.

Another common simplification is the formulation of the problem as a Stackelberg game
[YL12; YL13; Sad+18; Bur+22], where agents take turns sequentially, after observing the
actions of the previous agents. For example, Sadigh et al. [Sad+18] assume that the automated
vehicle chooses its plan first, and a human controlled vehicle acts according to a best response

31

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

to that plan. This effectively tames the combinatorial nature of the problem, as the solution
can now be found by sequentially choosing optimal strategies for each agent. Interestingly,
this inverts the sequential planning logic described in Section 2.1.1, where the plan of an
automated vehicle is the best response to the predictions of all surrounding vehicles [Fis+19].
Burger et al. [Bur+22] raise the concern that with the Stackelberg problem formulation, the
automated vehicle may behave obstructively towards others. When their trajectory is planned
as the best response to the trajectory of the automated vehicle, the others are effectively
predicted to always put up with the behavior of the automated vehicle. To find a cooperative
and courteous plan in a Stackelberg game, a cooperative cost function is proposed as well as a
method to consider safety constraints in the trajectory optimization.

Finally, exact solution methods, such as [Pru+19; Pru+20], search for a Nash Equilibrium,
where no participant can improve its obtained reward by changing its strategy [Nas51; Kre89].
A solution becomes possible by restricting each agent to select between few acceleration
profiles along fixed paths.

As the line between RL based methods and planning based methods is blurred, some RL
approaches are based on a game-theoretic fundament. For example, [Li+16; Li+18; GS19;
Bou+20; GS20; AY22] use level-k reasoning [SW95]: after manually formulating a “level-0
policy”, an agent is iteratively trained to learn a level-k policy in an environment populated
with agents controlled by the previous level-(k−1) policy. Köprülü et al. [KY21] extend this
idea by allowing the agent to dynamically select a policy of an adequate level at runtime. The
previously discussed single-shot prediction approaches [Lee+17; KKC20], which involve
iteratively predicting future trajectories for all agents and using these predictions as input in
subsequent iterations, share similarities with the level-k idea. However, these approaches
create levels of concrete trajectory predictions instead of levels of behavior policies.

2.4.4 Other Prediction Methods

Gridmap-Based Prediction Ondrúška et al. [OP16; Ond+16] propose an integrated de-
tection, tracking and prediction framework for an occupancy grid map representation of the
environment of a robot using a RNN. Hoermann et al. [HBD18] pursue a similar idea to
predict the occupancy grid around an automated vehicle using a CNN for up to 3 s. The
key advantage of directly operating on occupancy grid pixels is that no model assumptions
are required and thus arbitrary traffic participants (e.g., cars, pedestrians) can be handled.
Moreover, a probabilistic occupancy gridmap is the most flexible representation of uncertain
future positions. However, interaction is not considered in these approaches and long-term
predictions occupy large areas of the map with occupancy probabilities, making the predic-
tions only suitable for short-term collision avoidance. Fast and Furious [LYU18], IntentNet
[CLU18] also operate on raw Light Detection and Ranging (LiDAR) point clouds or occu-
pancy grids, but try to detect individual objects first before predicting their trajectories, all

32

2.4 APPROACHES TO TRAJECTORY PREDICTION

within one single neural network trained to solve 3D detection, tracking and short time motion
forecasting. MultiXNet [Dju+21] adds a second stage to IntentNet to produce multimodal
trajectory predictions with uncertainty characterization.

Set-Based Prediction Similar to gridmap-based predictions, the main application of set-
based predictions is short-term collision avoidance. Consider the complete set of states that
other traffic participants can physically reach within a limited time horizon. An automated
vehicle can plan a guaranteed safe trajectory if it does not intersect with this set. Althoff
[Alt10] develops multiple methods to construct the reachable sets of an automated vehicle
and surrounding traffic participants. Thereby, conventional reachability analysis can formally
prove the safety of an automated vehicle, whereas stochastic reachability analysis estimates
the probability of reaching unsafe states, allowing to compare different planned trajectories
with respect to their safety.

As the set of physically reachable states of others grows rapidly, it prohibits any close
interaction with other vehicles. In subsequent work, Koschi et al. [KA17] instead propose the
concept of legal safety, which assumes that other traffic participants abide by the traffic rules,
restricting their reachable set to the legally reachable set. The reachable set is extended when
drivers violate traffic rules. Based on these ideas, Pek et al. [Pek+20] propose a method that
ensures the existence of safe fallback trajectories, thereby guaranteeing that the automated
vehicle never causes a collision.

Log Replay Strictly not a prediction approach, the simplest form of simulating other drivers
is a direct playback of recorded trajectories (log replay) [Ber+21]. This is only applicable for
retroactively simulating traffic scenarios, but not for on-line prediction of currently observed
situations. Typically, one vehicle under test is controlled by an algorithm, whereas all other
vehicles are played back from data, e.g., [MWK17]. To reliably succeed in a log-replay
simulation environment, the planned trajectory needs to be close to the original trajectory
of the vehicle under test. If the planned trajectory is different, this might lead to collisions
that are not caused by a fault of the trajectory planner, but due to the non-reactiveness of the
surrounding played back vehicles. Bergamini et al. [Ber+21] describe this phenomenon as
simulation drift.

2.4.5 Discussion

Except for the gridmap-based approaches, most works share the assumption that environment
perception is an upstream problem, and directly operate on the state estimates of detected
objects. Moreover, all surveyed approaches that make use of map data assume that the map is

33

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

given. An overview of how the contributions from this work connect with previous work in
the field is provided in Figure 2.8.

Deep learning methods have made it possible to incorporate the entire environment, including
nearby vehicles, as the input of the prediction algorithms. Thus, most recent works belong to
the category of interaction-aware models. However, the subdivision between passive, reactive
and proactive interaction-awareness highlights significant differences in the architecture
of these models. The flow of information inside the different approaches is depicted in
Figures 2.5 to 2.7.

Passive interaction-aware models use all information available at the prediction origin, includ-
ing current and possibly past states of surrounding vehicles. However, they effectively predict
the trajectory of each agent independently based on this information. These approaches
remain popular, because they are conceptually easy to implement, and because the metrics of
many prediction benchmarks do not penalize the logical inconsistencies that arise as a result
of the independent prediction approach [Ett+21; Tol+21]. One appealing advantage of these
approaches is the ability to use a single-shot architecture, i.e., the prediction network directly
outputs the full predicted trajectory of an agent, which is computationally cheap.

In contrast, reactive approaches predict future trajectories step by step by repeatedly executing
a single-step behavior model for each agent in a traffic situation. This enables true interaction
between the agents at prediction time, because information can be exchanged between agents
at every prediction step, as shown in Figure 2.7. Behavior models have a broader range
of applications than passive prediction models: They straightforwardly enable hypothetical
inference by fixating the trajectory of one or more agents before performing the simulation.
Thus, these approaches can be used in both, a sequential or holistic cognition block (see
Section 2.1.1). Trajectory predictions can be made for arbitrary lengths and respect the
dynamic constraints of the kinematic state transition model. Moreover, depending on the
modeling, the predictions are actual trajectories that allow for evaluating certain criteria
along them, such as the longitudinal or lateral acceleration. This can be useful in cooperative
behavior planning when reasoning about the influence of the plan of the ego on others, e.g.,
[Bey+19]. The behavior models can also be used for the simulation of the behavior of
surrounding vehicles during the development of the cognition block. However, learning a
behavior model that is both stable and accurate for long time horizons is significantly more
difficult than the training of a passive prediction model. Therefore, this thesis investigates
three approaches to construct such a behavior model: Behavioral Cloning in Chapter 4,
Reinforcement Learning in Chapter 5, and Inverse Reinforcement Learning in Chapter 6.

Finally, proactive approaches raise the even harder problem of finding plans for all agents in a
traffic situation that are jointly optimal. The resulting plan of surrounding vehicles can be
interpreted as their prediction. While conceptually interesting, current practical implemen-
tations of this idea require severe simplifications to find a solution and are computationally

34

2.4 APPROACHES TO TRAJECTORY PREDICTION

Trajectory
Prediction

Physics-Based
Methods, e.g.,

[SRW08]

Maneuver-Based
Methods, e.g.,

[Sac+20a; Vog+20;
DRT18; Xie+18]

Interaction-
Aware Methods

Passive Interaction-
Awareness, e.g.,

[Gao+20; Dju+20]

Reactive
Interaction-
Awareness,
Chapter 3

Learned Be-
havior Models

Behavioral
Cloning, Chapter 4

Single-Step Train-
ing, e.g., [Sch+19]

Multi-Step
Training, e.g.,

[Sac+20b;
Sac+21]

Reinforcement
Learning, e.g.,

[Sac+22a;
Kon+21; Kon+23],

Chapter 5

Inverse Reinforce-
ment Learning,

Chapter 6

GAIL, e.g.,
[Kue+17; Bha+18]

AIRL, e.g.,
[Sac+22b;
Rad+23]

Manually Formu-
lated Behavior
Models, e.g.,

[THH00; Sch+18b]

Proactive
Interaction-
Awareness,

e.g., [Sch+17b;
Sad+18; Pru+20]

Figure 2.8: Overview of the most relevant approaches to trajectory prediction presented in Section 2.4,
with some representative publications. The methods investigated in this thesis fall into the
category of Reactive Interaction-awareness, where a microscopic traffic situation is
executed with a behavior model for each agent to obtain the interacting predictions of the
trajectories of all vehicles. Three different approaches to learning the behavior model are
investigated: Behavioral Cloning, Reinforcement Learning and Inverse Reinforcement
Learning. Publications associated with this thesis are emphasized with bold letters.

35

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

significantly more demanding than the execution of a reactive policy. Thus, these approaches
are not further considered in this thesis.

2.5 Handling of Uncertainty

As discussed in Section 2.2, there are multiple sources of uncertainty: First, multiple routes in
the road network induce multimodality in the prediction. The second source of multimodality
is the different order in which maneuvers can be executed. Moreover, uncertainty within a
single mode is caused by different driver characteristics, vehicle properties, and remaining
aleatoric uncertainty. This section gives an overview on how different prediction approaches
handle the uncertainty.

2.5.1 Conditioning as an Enabler

Maneuver-based approaches share the notion that predicting maneuver conditional trajectories
p(yj |xj ,mj), and separately estimating the maneuver p(mj |xj), is more informative than
directly predicting p(yj |xj). This is backed by information theory [CT06, Theorem 8.6.1], as
the (differential) entropy h never increases, given additional information m, i.e., h(y|x,m)≤
h(y|x). Moreover, if the prediction is executed repeatedly, as new observations x arrive, it
often can be assumed that certain maneuver variables remain unchanged, e.g., the route that
the agent is going to follow. Thus, the maneuver variable can be tracked over time using
Bayesian filters, as for example proposed in [TF13; DRT18; Xie+18].

Some passive interaction-aware approaches [Cha+19; Zha+20; Gil+21; Zha+21] also intro-
duce similar latent variables that encode different goal positions or paths on a map. Here, the
motivation for introducing the new latent variable is often the ability to explicitly address
multimodality of the road network and to circumvent the mode collapse problem (see p. 22)
that occurs when directly predicting multiple hypotheses.

Reactive interaction-aware approaches, too, are often conditioned on latent variables that
describe their goal. Goal conditioning is essential to these approaches, because the behavior
models are always goal-directed. For example, a behavior model that controls a vehicle
driving through a roundabout needs to know which exit to take.

All these approaches reduce the uncertainty in the predicted future traffic situation y by intro-
ducing uncertainty about latent variables m. This thesis follows these ideas by introducing
a latent variable that describes the path that a vehicle will take through the road network,
i.e., whether a vehicle will take the first, second or third exit of a roundabout. Thereby, the
major reason for multimodality is eliminated from the prediction model. Besides, this is the
inspiration for Section 5.5 of this thesis, where additional latent variables are introduced that
describe driver preferences, e.g., the desired time gap to a preceding vehicle, or the weight

36

2.5 HANDLING OF UNCERTAINTY

of a lateral acceleration penalty. Thereby, even more uncertainty can be shifted from the
conditional trajectory prediction p(y|x,m = m,M) to latent variables m. Effectively, the
conditional prediction model translates uncertainty from the low-dimensional preference
space to the high-dimensional trajectory space.

2.5.2 Representation of Uncertainty

After factoring out the uncertainty induced by mode variables, the question of a representation
of the future trajectories p(yj |xj ,mj ,M) remains. Some approaches [Cha+19; HSP19;
Dju+20] directly produce a closed form density by describing the future positions yj1:H =
(yj1,y

j
2, . . .) with each future position yjk as a 2D normal distribution characterized by its mean

vector and covariance matrix. Such a closed-form specification of the density is desirable: It
allows to analytically reason about future occupancies, but can also be used to draw samples
of predicted positions in Monte-carlo based planning algorithms. Moreover, it is easy to
train, interpret and visualize. However, modelling each future position individually as a
Gaussian also implies the assumption that successive positions are conditionally independent,
thereby neglecting the kinematic constraints that real trajectories are subject to. Thus, these
approaches predict future occupancies, but not trajectories.

Addressing this issue, other approaches [Wie+12; Rei22] represent trajectories using basis
functions such as Bézier curves, and predict the distribution of the coefficients of the basis
functions. Each sample from the predicted coefficient distribution can be translated into a
kinematically feasible trajectory.

However, both, a direct representation of the trajectory or a parametric representation via basis
functions are incapable of expressing the correlation between predictions of different vehicles
and are thus only suitable for passive behavior prediction. The same limitation applies to
gridmap based representations of future occupancies such as [HBD18; Rid+20; Gil+21].

No surveyed related work yields a closed form description of the joint future trajectory
distribution y1:H of all agents that respects kinematic constraints along the trajectories as
well as the interactions between all agents. Instead, many approaches predict one or multiple
future trajectories [Lee+17; CLU18; Cas+20b; Suo+21], and optionally their probabilities,
e.g., [Cui+19; Gil+21; Zha+21]. Using representative trajectories instead of distributions
is also reflected by evaluation metrics in popular benchmarks such as nuScenes [Cae+20]
and Argoverse [Wil+21], which require prediction approaches to generate multiple trajectory
predictions per agent. The evaluation is based on the distance between the closest prediction
and the ground truth.3

3The evaluation metrics of [Cae+20; Wil+21] are described thoroughly on https://nuscenes.org/
prediction and https://eval.ai/challenge/1719/evaluation (Both: Accessed on May
30, 2022).

37

https://nuscenes.org/prediction
https://nuscenes.org/prediction
https://eval.ai/challenge/1719/evaluation

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

The fundamental idea behind these approaches is that high-dimensional random variables,
such as the joint future trajectories, are too complex to be directly expressed in closed form
due to the correlation between its components. Instead, samples from the density can be
significantly easier to generate. This idea also lays behind the field of generative models,
such as CVAEs [KW14] and GANs [Goo+14], which are prominently employed to generate
realistically looking images, i.e., samples from a space with more than 106 dimensions
[Kar+20]. In the context of trajectory prediction, a direct application of CVAEs has been
proposed by [CLU18; Ma+19]. However, as discussed in Section 2.4.3.2, to properly model
the sequential nature of trajectory formation and interaction between agents, this work focuses
on the generation of trajectories using a behavior model. There are many similarities between
GAN and IRL, which will be discussed in Chapter 6.

2.6 Environment Representation

The representation of the environment that forms the input of the prediction algorithm is a key
differentiator of the different approaches to trajectory prediction. Standard neural networks,
which underlie most recent interaction-aware prediction approaches, have a fixed number of
inputs. This requires some consideration of how to represent a variable number of vehicles in
a complex road network to the prediction algorithm.

Three major types of representations are used in related works: feature vectors, images, and
graphs. This section discusses the advantages and disadvantages of each. To simplify the
discussion, the focus is placed on the representation of the surroundings of a single target
vehicle. To predict a situation with multiple interacting agents, this representation is computed
from the perspective of each agent individually before the prediction is performed.

Feature Vector Based Representation A natural approach to representing the situation
that the target vehicle is faced with is a feature vector. Each component of the feature vector
describes a different property of the situation. A simple car-following situation can fully be
described by three parameters: the speed of the target vehicle, as well as the distance and
speed difference to its preceding vehicle. These features are for example used in the IDM
[THH00] and the Krauß model [KWG97]. Models that address more complex situations
require additional features. For example, Lenz et al. [Len+17] describe multi lane highway
situations via the speed of the target vehicle, and the sizes, relative distances and velocities of
up to seven neighboring vehicles. Values of vehicles or lanes that are not present are indicated
by a boolean, and the corresponding feature values are set to 0. Similar representations for
highway situations are used by [HWL18; HWL20] and the rule based MOBIL model [TK09].
The advent of learning-based methods enabled the use of additional features, such as those
from multiple past timesteps [Lef+14].

38

2.6 ENVIRONMENT REPRESENTATION

In urban situations, even more features are required for a proper representation of the situation.
Schulz et al. [Sch+19] proposes a model that uses more than 40 features to describe the target
vehicle state, road course, traffic rules, and interactions with other vehicles. Importantly, the
proposed model is conditioned on the route that the agent takes through the road network.
This is implemented via the variables that describe the future road course of the vehicle: For
example, if the route intention is to turn left at the next intersection, the road course variables
are different than if the vehicle were to turn right. The road course is described by the road
curvature at different distances and relative angles to the road centerline at different distances.
This thesis uses a similar representation that is described in detail in Section 3.2.

Image-Based Representation Many works, especially passive interaction-aware ap-
proaches, use an image-based representation of the traffic situation. The advantage of this
representation is that it can flexibly represent complex traffic situations without the effort
of manually defining features. One example of this approach is proposed by Henaff et al.
[HCL19], where the channels of an RGB image are used to represent lane markings, the
target vehicle and surrounding vehicles from a birds-eye-view perspective centered around the
target vehicle. This image is processed by an ordinary CNN. Like many other image-based
approaches, the position and speed of the target vehicle is explicitly fed into the model
by concatenating it with the output of the CNN. To add historic context, this operation is
performed for the 20 most recent past timesteps, and the result is again concatenated. This
jointly encoded information is then processed by a neural network that performs the prediction.
Many other works, such as [Cui+19; Dju+20; Ber+21], use similar birds-eye-view rasterized
RGB images. To decode the information from the image for the ensuing trajectory predic-
tion, advanced CNN architectures such as MobileNetV2 [San+19] or ResNet-50 [He+16]
are employed. These were originally targeted at computer vision applications. The use of
these complex architectures illustrates that a significant computational effort is introduced
when image-based representations are employed. Also, image-based representations typically
use more memory than feature vector based representations. For example, [Dju+20] uses a
300x300 image with 3 channels, which is multiple orders of magnitude more data than any
feature vector based representation.

One notable other stream of work [LYU18; CLU18; Dju+21] directly operates on raw sensor
data projected into a birds-eye-view image, such as voxelized LiDAR measurements. To add
context, additionally rasterized maps are leveraged. These approaches thereby address the
perception and prediction problem simultaneously.

Graph-Based Representations strive to combine the expressiveness and compactness of
feature vectors with the flexibility of image-based representations. A seminal work in this
domain is VectorNet [Gao+20]. The authors propose to represent all relevant map elements as

39

2 FUNDAMENTALS OF DRIVER BEHAVIOR MODELING

well as surrounding vehicle trajectories as polylines. A polyline consists of multiple connected
line segments. A polyline graph is constructed by defining each line segment to be a node of
the graph, with the start and end position as its features. Each polyline graph is then processed
by a Graph Neural Network (GNN). Similar to CNNs, features are aggregated using pooling
functions, such that each polyline is described by a fixed-length vector.

In a second step, these polyline-level features of map elements and surrounding agent tra-
jectories form a “global interaction graph” that is again processed by a GNN. Based on this
encoding, the final prediction network predicts the future trajectory of the target vehicle.
Compared to a baseline approach that uses rasterized images as input, the required Floating
Point Operations (FLOPs) are reduced by an order of magnitude and the amount of network
parameters is reduced by 70% [Gao+20].

As graph-based representations are a very recent development, no consensus on the representa-
tion has emerged. Significantly different graph-based architectures are for example proposed
in [Die+19; Lia+20; Cas+20a; JDZ22], but are omitted here for brevity.

Discussion The recent advances in graph-based representations indicate that they will even-
tually replace image-based representations, as they offer the same flexibility with significantly
reduced computational overhead. Nevertheless, this work builds on a feature vector based
representation for three reasons: First, it enables to precisely control the information that is
processed by the behavior model, as different feature sets can be easily defined. Secondly,
each input of the resulting behavior model has a clear meaning, which allows to reason about
the function of the behavior model by examining the changes in the output when manipulating
individual inputs. Thirdly, in contrast to graphs, feature vectors have a fixed size, which
significantly facilitates the implementation by enabling the use of efficient data structures and
vectorization operations as provided by the scientific computing packages NumPy [Har+20]
and PyTorch [Pas+19]. This also allows for the use of comparatively simple, small and hence
fast neural network architectures. However, the methods proposed in this work could also be
realized with image- or graph-based representations. This is demonstrated in a followup work
[Kon+23], where the Reinforcement Learning approach presented in this thesis is augmented
with a graph-based environment representation.

2.7 Conclusion

One important application of behavior prediction is behavior planning. The combination
of prediction and planning can be made sequentially, i.e., first predict, then plan. However,
this leads to overcautious plans and ultimately to the frozen robot problem, which is why
recent works in behavior planning explore a holistic planning approach that estimates the
impact of the planned behavior on others. This holistic planning requires the prediction to be

40

2.7 CONCLUSION

capable of hypothetical inference, i.e., the predictions of surrounding vehicles need to react to
hypothetical plans of the ego vehicle.

The widely acknowledged survey on motion prediction by Lefèvre et al. [LVL14] differentiates
between physical, maneuver-based and interaction-aware prediction models. Of these, only
the latter are capable of predicting the interaction between vehicles. More specifically, this
thesis further subdivides interaction-aware models into passive, reactive and proactive models,
discussed in detail in Section 2.4.5, and explains why only reactive and proactive interaction-
aware models are truly capable of modeling the interaction between predicted trajectories.
Due to the severe simplifications that most proactive approaches entail, this thesis focuses on
reactive models.

Reactive models make predictions by rolling out a single-step behavior model for each
participant of the traffic situation. Through this mechanism, interaction can properly be
modeled and hypothetical inference can be performed. The accuracy of the predictions
however strongly depends on the quality of the behavior model. Manually formulated behavior
models are typically collision-free, but inaccurate for long-term predictions. Learning behavior
models is an appealing alternative, but challenging because prediction errors accumulate
and are fed back into the model during the execution. For this reason, this thesis explores
three methods to obtain more robust behavior models with Behavioral Cloning and (Inverse)
Reinforcement Learning. Another important benefit of reactive prediction models is that the
obtained behavior models can also be directly employed for the simulation of driver behavior,
for example to test the interaction between an automated driving function and surrounding
vehicles in a simulator.

Concerning uncertainty, conditional maneuver variables are very advantageous for addressing
the multimodal nature of the prediction and are therefore used in this work to differentiate
between potential future routes. As the density of the future traffic situation y in closed form
is highly entangled, this thesis instead predicts a sample from the density, similar to most
related works.

Lastly, different representations of the traffic situation as an input to the prediction neural
network are compared. This thesis employs a feature-based representation, because it enables
controlling the information used by the prediction model and facilitates insight into its
functioning.

41

3 Simulation Setup

Parts of this chapter have been published in [Sac+21; Sac+22a; Sac+22b].

This chapter describes the simulation that forms the basis for the evaluation and training of
the methods described in the following chapters. In Figure 1.2, this chapter closes the first
link: It shows how a set of interacting trajectories is obtained by executing a policy for each
vehicle in a simulated traffic situation.

The simulation setup is depicted in Figure 3.1: Following the convention of RL [SB18], this
work distinguishes between environment and agent. An agent controls a single vehicle by
making observations from the environment and selecting appropriate actions via its behavior
model, also called policy. This chapter assumes that the policy is given; the following chapters
describe how it can be obtained. The environment simulation calculates the effect of the
action using a kinematic bicycle model by updating the state of the agent accordingly. Then,
the relations between the vehicles are determined, i.e., which vehicles are preceding and
conflicting. Finally, the observation model is executed to determine the next local observation
of each vehicle and the cycle begins anew.

The simulation of the traffic situation is one realization y of the random variable y that
characterizes the future traffic situation. Equivalent to the general problem formulation in
Section 2.3, the initial simulation state y0 = y1:N

0 = (y1
0,y

2
0, . . . ,y

N
0) comprises the states of

all agents 1 . . .N at the initial timestep 0. To predict the evolution of the traffic situation,
the simulation loop in Figure 3.1 is executed simultaneously for each agent in the traffic
situation. Hypothetical inference can be performed by fixating the trajectory of one or more
agents, whereas the remaining agents are controlled through the simulation loop. To represent
uncertainty, the kinematic model, the observation model and the policy are formulated as
probabilistic models and allow for additional noise or conditional variables. Multiple uncertain
predictions of the same traffic situation can be generated by repeating the simulation from y0

with different conditional or noise variables.

3.1 Kinematic Model

For a realistic simulation, a kinematic model that respects the non-holonomic constraints of
real world vehicles is required. For this purpose, similar to [Sch+19], the kinematic bicycle
model [WQ01] is employed. It is a simple kinematic model that allows for modelling the
inability of cars to change their orientation in standstill, but ignores tire slip.

43

3 SIMULATION SETUP

∼

dconfl,1
φ10

φ5dyield

dr
dl

dpre

log(σacc)
µδ

log(σδ)

δ

Policy Neural Network
π(a6|o6) =N (µa,Σa)

Observation model
here: o6

k+1

Traffic Situation
Joint state y

Kinematic Model
p(y6

k+1|y6
k,a

6
k)

Environment

Agent

Action a6 Observation o6

µacc

Figure 3.1: Simulation from the perspective of one agent 6. The action is selected deterministically by
the policy network as a6 = (µacc,µδ). Alternatively, it can be drawn from the distribution
N (µa,Σa), parameterized by µa = (µacc,µδ) and the diagonal covariance matrix
Σa = diag(σ2

acc,σ
2
δ), indicated by the tilde. Image adapted from [Sac+22a].

Y

X

δ

β ψ

r

δ: Steering angle
β: Slip angle
ψ: Heading angle
c: Centre of gravity (COG)
r: Turning radius
lr, lf : Distance axles to COG
v: Speed

β

c

lr

lf

v

Figure 3.2: Kinematic bicycle model, adapted from [Kon+15]

44

3.2 OBSERVATION MODEL

This work adapts two simplifying assumptions from [Kon+15] compared to [WQ01]: The
rear wheel cannot be steered and only the effective speed at the center of gravity is considered
instead of the individual wheel speeds. In doing so, the kinematic equations

ṗx = v cos(ψ+β) (3.1)

ṗy = v sin(ψ+β) (3.2)

ψ̇ = v

r
= v

sinβ
lr

(3.3)

β = arctan
(

lr
lf + lr

tan(δ)
)

(3.4)

v̇ = alon (3.5)

can be derived from the trigonometric relations in Figure 3.2. Hereby, (px,py) is the position
of the center of gravity. The remaining variables are described in the figure. The speed v
is a scalar value along the current direction of movement. The model is controlled via the
acceleration alon and the steering angle δ, which are the output of the behavior model. Apart
from ensuring kinematic feasibility of the predictions, using the kinematic bicycle model
inside the simulation enables keeping track of the full kinematic state (pjx,pjy,ψj ,vj) of each
agent. In RL, this is used to evaluate the discomfort of trajectories, e.g., by assessing the
longitudinal and lateral acceleration. For this purpose, the lateral acceleration

alat = v2/r = v2 sinβ
lr

(3.6)

is approximated via the current turning radius r. To ensure physical plausibility, the kine-
matic parameters of an Audi A6, listed in Appendix C.1, are used for the simulation. The
longitudinal acceleration is restricted to be in (−7,3)m/s2 and the steering angle is restricted
to be within (−π/7,π/7)rad. Driving in reverse is ruled out by the simulation.

Apart from the kinematic state, this work follows the modelling of [Sch+19], such that the
full simulation state yj = (pjx,pjy,ψj ,vj ,mj) of an agent additionally contains a conditional
maneuver variable mj , which describes the route that an agent takes through the roundabout,
e.g., whether it takes the first or second exit. The route is encoded as the list of road segments
that the agent will drive through.

3.2 Observation Model

The observations that the agents base their decisions on are of major importance. They
characterize the local environment of an individual agent. The observation is expressed as a
vector of features of the local environment of an agent.

45

3 SIMULATION SETUP

Figure 3.3: Illustration of relations between vehicles, which also depend on the route intentions:
Preceding: 2 is the preceding vehicle of 1; 3 is the preceding vehicle of 2. Because it
leaves at the first exit, 0 has no preceding vehicle. Otherwise, 3 would be the preceding
vehicle of 0.
Conflicting: As the route intentions of 1 and 2 are unknown to 0, both are conflicting
vehicles of 0 that have priority. As soon as it leaves the roundabout, 1 loses its status as a
conflicting vehicle to 0. When 2 enters the highlighted corridor of 0, it becomes the
preceding vehicle of 0 and is no longer its conflicting vehicle.
Non-Priority: In turn, 0 is currently a non-priority vehicle to 2. However, 0 is not a
non-priority vehicle to 1, because 1 plans to leave the roundabout before the entry of 0.

The first part of the observation vector describes the current state of the vehicle in relation
to the map, i.e., the speed, the distances to the road boundaries dl,dr and the heading angle
with respect to the future road course φ0...20 as well as the road curvature c0...20. Importantly,
these features depend on the route intention of the vehicle, e.g., the angles to the road center
differ depending on the route that is encoded in the maneuver variable mj .

The remaining components of the observation vector describe the relation to relevant sur-
rounding vehicles, i.e., the preceding vehicle, the closest two conflicting vehicles that have
right-of-way at the next merge point, and the closest non-priority vehicle that has to yield at
the next merge point. These relations also depend on the route intention of each agent, as
illustrated in Figure 3.3. The relation to the preceding vehicle is described by the bumper-to-
bumper distance dpre between the vehicles and their velocities. In right-of-way situations, the
relation is characterized via the speed of the agent and its conflicting vehicle v and vconfl,1 as
well as their distances to the merge zone dyield and dconfl,1. A representation of the second-
closest conflicting vehicle is required for the behavior model to decide whether it can enter
directly behind the closest conflicting vehicle.

Throughout the publications that this thesis is based on, the observation model has been
continually extended. The fundamental feature set was introduced in [Sac+21]. Later,
[Sac+22a] introduces features that describe non-priority vehicles that are approaching the
roundabout (dmerge,vnonpr,dnonpr) to improve the model performance in situations where a

46

3.2 OBSERVATION MODEL

Table 3.1: Components of the observation vector o

Feature Symbol Unit Default max µ σ

Speed v m/s – – 6.7 m/s 3.69 m/s
Distance to left and right boundary dl,dr m – – 2.27 m, 1.97 m 0.69 m, 0.76 m
Heading relative to lane in {0,5,10,20}m φ0...20 rad – – ≈ 0 0.08,0.1,0.12,0.25
Road curvature in {0,5,10,20}m c0...20 m−1 – – ≈ 0 ≈ 0.04m−1

Speed of preceding vehicle vpre m/s v – 7.2 m/s 3.6 m/s
Distance to preceding vehicle dpre m 30 m 30 m 21.4 m 8.7 m
Distance to next yield line dyield m 40 m 40 m 32.1 m 12.4 m
Speed of conflicting vehicle vconfl,1 m/s 5 m/s – 5.7 m/s 1.1 m/s
Distance of conflicting vehicle to merge zone dconfl,1 m 40 m 40 m 31.3 m 13.3 m
Angle of conflicting vehicle to merge point ψconfl rad π/2 – 1.26 0.48
Speed of 2nd conflicting vehicle vconfl,2 m/s 5 m/s – 5.24 m/s 0.75 m/s
Distance of 2nd conflicting vehicle to merge zone dconfl,2 m 40 m 40 m 38.1 m 5.61 m
Distance to next priority merge zone dmerge m 40 m 40 m 36.7 m 8.76 m
Speed of non-priority vehicle vnonpr m/s 0 m/s – 1.67 m/s 3.2 m/s
Distance of non-priority vehicle to merge zone dnonpr m 40 m 40 m 29.2 m 16.3 m

non-priority vehicle violates right-of-way rules, thereby requiring an inner-roundabout agent
to brake slightly. [Sac+22b] additionally introduces ψconfl, the heading angle of the conflicting
vehicle towards the merge point, thereby enabling an agent that wants to enter the roundabout
to detect earlier whether a conflicting vehicle will leave the roundabout. For comparability,
all experiments described in this thesis have been repeated with the full set of observations.

The observation vector is partially illustrated in Figure 3.1, with all components listed in
Table 3.1. It forms the input of the policy neural network. To ensure stability of the neural
network, the inputs need to be bounded and are therefore limited to the maximum values
indicated in the table, if the features are unbounded. All features have a natural minimum
bound, for example the distance to the next yield line. After the yield line has been crossed
and no next yield line exists, its value is set to the default. The same procedure is used for
the distance to the merge zone. These natural bounds are not explicitly stated in the table. In
the case of distances to other vehicles, the upper limit can be interpreted as the limited visual
range of an agent.

If one feature is missing, for example because there is no preceding vehicle, it is replaced by
a surrogate value. These values are selected to logically describe the situation. For example,
if an agent has no preceding vehicle, the feature “distance to the preceding vehicle” is set to a
large distance and the feature “speed of the preceding vehicle” is set to the own speed of the
agent. Thereby, an uncritical car-following situation is described where the influence of the
preceding vehicle is negligible. These default values are listed in Table 3.1, if applicable.

Moreover, to improve the convergence speed of the network and thereby reduce the training
time, the features should be of approximately equal magnitude, and centered around 0
[Zha+22, Ch. 8.5.1]. Therefore, a standardization is performed before processing the features
with a neural network by subtracting the mean and dividing by the standard deviation. These

47

3 SIMULATION SETUP

values are empirically estimated on the training dataset described in the next section and also
listed in Table 3.1.

3.3 Dataset

Given an initial situation, the simulation loop can be executed using a behavior model. To
assess the quality of the model, the evolution of the simulated traffic situation needs to be
compared to the ground truth situation. For this purpose, the simulation needs to be capable
of playing back real world data. The second and equally important use of real world data is
the generation of training data, which is used and explained in the chapters on BC (Chapter 4)
and IRL (Chapter 6).

Trajectory Data The dataset was recorded at two different roundabouts near Ingolstadt
(Germany) shown in Figure 3.4. The first roundabout is close to a village and has high
traffic densities, especially at rush hours. The second roundabout is located further away in
a rural area. Traffic is typically lower, but vehicles are driving faster. To obtain real-world
data, the trajectory dataset was captured using a DJI Mavic 2 Zoom drone. While the data
is captured using a drone, this does not imply that the models trained in this thesis require
drone data as input. The observation vector described in Section 3.2 is designed such that
it can also be determined from the on-board perspective of an automated vehicle. To this
end, the perception system of the automated vehicle needs to determine the position, heading
and speed of surrounding vehicles and must project them onto a high-definition map of the
environment. Then, all observation features can be computed, regardless of the origin of the
data.

Capturing data from an aerial perspective has many advantages over recording data from
a vehicle: It allows to simultaneously observe the interaction between many vehicles and
thereby realistically populate the simulation environment. There are no occlusions. Coherent
vehicle trajectories can be observed for a long time, typically their whole way through the
roundabout. A large quantity of trajectories and diverse driving styles can be captured in
relatively short time. Finally, recording the data with a drone is less conspicuous than using a
measurement vehicle and thus less likely to influence the observed behavior.

To capture the largest possible area of approximately 90× 160m, the drone was hovering
approximately 100 m above the roundabout center, the legal maximum at time of recording.
Each roundabout was filmed 8 times for approximately 20 minutes at different times of the
day to capture low and high traffic densities. In total, approximately 8000 vehicle trajectories
have been captured, with 270 to 900 vehicles in each recording.

48

3.3 DATASET

Figure 3.4: Snapshot of the drone footage at both recording locations. Non-overlapping recordings
from the left roundabout are used for training, validating and testing the learned models.
Trajectories from the right roundabout are exclusively used for testing the ability of the
model to generalize to untrained situations.

To extract the vehicle trajectories, the recorded videos were processed by the commercial
service provider DataFromSky1. The processing steps are described in detail in [Ape+15]:
Distortion correction of the video, geo-alignment of frames to maintain a stable perspective
throughout the 20-minute recording, vehicle detection, transformation from pixel coordinates
to a world-fixed 2D Cartesian coordinate system, and tracking of the detected vehicles using a
particle filter. As the shape and kinematics of trucks and busses are often wrongly estimated,
situations which include these vehicle classes are excluded from the dataset.

The result is a dataset of trajectories, where the position, speed, heading, and tangential and
lateral acceleration of each vehicle is known at each time step. This data can be imported
to the simulation framework. After determining the route that each vehicle takes, and its
related vehicles, the local observations can be computed. Effectively, this converts the original
trajectories, i.e., sequences of kinematic states, to sequences of local observations. Based on
these, statistics for each component of the observation vector can be computed, and the mean
and standard deviation for the standardization in Table 3.1 are determined. The histograms of
all features are depicted in Appendix A.1.

A reference measurement was performed using a highly precise localization system to evaluate
the quality of the trajectory dataset. The procedure and detailed results are described in
Appendix A. The average displacement error of the trajectories from the drone footage is
0.25 m, and in 95% of all cases below 0.6 m. The speed estimate of the DataFromSky (DFS)
pipeline is on average 0.027 m/s higher than the ground truth speed, with a standard deviation
of 0.144 m/s. Barmpounakis et al. [Bar+19] also evaluate the error of the speed estimate
of the DFS pipeline on a different dataset. If the calibration is performed successfully, it is
stated to be below 1.2 km/h, which is in line with the measurements in Appendix A. For the
evaluation of long term predictions, the position and speed errors can be considered negligible
compared to the prediction error.

1https://datafromsky.com/, accessed on July 1, 2022

49

https://datafromsky.com/

3 SIMULATION SETUP

The acceleration estimate is on average 0.04 m/s2 higher than the ground truth. As the DFS
pipeline needs to reconstruct the acceleration effectively as a second order derivative of the
detected vehicle position, it is relatively noisy with a standard deviation of 0.26 m/s2.

Training, Validation and Testing Data One fundamental concept to reliably assess the
performance of machine learning methods is the split between training, validation and testing
data [Bis06, Ch. 1.3]. While the training data is directly used for improving the model, the
validation data is used for indirectly improving the model, e.g., by tuning hyperparameters or
determining when to stop the training. Finally, the test data is used exclusively for evaluating
the model.

To avoid leaking information from the test or validation dataset to the training dataset, the
data is split at a recording-level, as opposed to using some trajectories from one recording for
training and others for validation. The training dataset comprises trajectories from 3 separate
recordings captured at different day times and traffic densities at the left roundabout from
Figure 3.4. It contains trajectories from 1007 different vehicles with a concatenated duration
of approximately 180 minutes. The validation dataset contains trajectories from 289 vehicles
from a different recording with a concatenated total duration of approximately 40 minutes.
The testing dataset comprises trajectories from 3 different recordings at the first roundabout,
containing 1169 different vehicles. Furthermore, 8 recordings from the second roundabout
are used for testing with additional 1797 vehicles. This split between training and testing
data allows to evaluate the ability of a learning method to make predictions on the same
roundabout, as well as the ability to make predictions on a previously unseen roundabout.

Maps As described in Section 3.2, the models proposed in the following chapters rely on
information on the road, such as the distance to the road boundaries, or the current curvature.
To provide these values, a map is required. The map is created by manually tracing the
boundaries of each road segment in Figure 3.4, and transforming their coordinates from
pixel-values to a world-fixed 2D Cartesian coordinate system. Furthermore, the relation
between segments is stored, i.e., preceding segments, succeeding segments, and the priority
in right-of-way merges. From this information, a map with all possible routes through the
roundabout as well as their priority in right-of-way situations is constructed automatically.
Each route defines a Frenet coordinate system, i.e., a curvilinear coordinate system along the
track center. A position in Cartesian coordinates can be transformed to the Frenet system
defined by the route and vice versa. The route of a vehicle from the trajectory dataset is
determined by transforming multiple points from the trajectory into the Frenet system of
each possible route, and selecting the route with the lowest total lateral deviation. After
determining the route of each vehicle, the relations between vehicles can be established, as
previously illustrated in Figure 3.3.

50

3.4 IMPLEMENTATION

3.4 Implementation

The simulation framework described in this chapter is a central component to the experi-
ments in this thesis. It is used both for training and evaluating all policies presented in this
work. This section gives an overview on the aspects that have to be considered during its
implementation.

Differentiable Simulation To realize the multi-step training algorithm described in the
next chapter, the simulation framework is implemented in a differentiable manner. This
means that the framework can compute the gradient of the trajectory prediction error with
respect to the actions selected by the policy during each step. This requires differentiating the
outputs of all three components of the simulation framework with respect to their inputs—the
kinematic model, each function of the observation vector in Table 3.1, and the policy. A
justification for this claim is provided in Section 4.2.1. For the implementation, this means
that no off-the-shelf simulation framework can be used, but that the simulation needs to be
implemented from scratch in a software framework that enables automatic differentiation.
For this purpose, PyTorch [Pas+19] is used. PyTorch and other automatic differentiation
frameworks enable the regular implementation of a function, and automatically compute the
analytic gradient of the output of the function with respect to one or multiple inputs. As the
computation of gradients through the simulation incurs additional runtime, it is only enabled
during multi-step training, whereas it is not required during evaluation or reinforcement
learning.

Among prominent automatic differentiation frameworks, PyTorch was selected for the im-
plementation, because it allows for direct and systematic debugging of all functions, equal
to standard Python code. Moreover, the library provides methods for the implementation of
deep neural networks, such as neural network architectures and optimizers that make use
of the computed gradients. Hence, not only the simulation framework, but all policy neural
networks implemented in this work and the optimizers used during training use components
from the PyTorch library.

Speed of the Simulation Another important requirement to consider is the simulation speed.
Throughout the course of this work, thousands of training runs have been performed. For
quickly deciding which ideas are worth pursuing, training results should be available as fast as
possible. In most methods presented in this work, many traffic situations need to be simulated
during each training epoch. Hence, the simulation needs to be as fast as possible. In the
following, multiple measures that are taken to reach a high simulation speed are described.

51

3 SIMULATION SETUP

Vectorization Every component of the simulation is implemented in a vectorized manner,
meaning that it can effectively process multiple data in parallel. With this, all vehicles are
processed in parallel instead of sequentially during one simulation step. Moreover, multiple
traffic situations are processed in parallel. At hardware level, PyTorch translates the vectorized
function calls to Single Instruction, Multiple Data (SIMD) CPU instructions such as Intel’s
AVX [Gep17], where one instruction is performed on 8 float data points in parallel. Also, the
vectorization implicitly leads to advantageous memory access patterns, because it operates on
contiguous blocks of memory, meaning that the CPU cache is used effectively.

Overall, the parallelized simulation loop is executed as follows: First, each element of the
observation vector is computed in parallel for all vehicles in all simulated traffic situations.
Next, these observations are processed in parallel by the policy neural network to determine
the actions. Finally, the kinematic model processes the actions of all vehicles in parallel to
determine their next states. Then, the next simulation step starts with the computation of the
next observations. For optimized memory access, all data is stored in contiguous memory,
i.e., all vehicle states from all traffic situations are stored in one array, all observations are
stored in one array, and so on.

Storing Intermediate Results Computing the 22 observation features from Table 3.1 is the
most compute-intensive part of the simulation. To reduce the required computations, many
intermediate results are stored. For example, splines through all possible routes on the map
are only computed once per simulation. The transformation from Cartesian coordinates to
the Frenet system is only performed once per vehicle per simulation step. Also, the relations
between vehicles are stored between simulation steps and only re-evaluated when a vehicle
crosses a segment boundary.

Optional Visualization A clear separation between the core simulation and the visualization
is made. The simulation is executed without any visualization and stores the simulated
trajectories in a data structure. This data structure can optionally be visualized in a second
step.

Runtime Thanks to these points, 100 situations with a total of 1250 vehicles are simulated
for 50 steps in approximately 4.5 s on a single core of an i7-9700 CPU. This means that
approximately 14000 state transitions are simulated in 1 s of CPU time. For the typical
simulation step width of 0.2 s, this means that 2800 s of driving can be simulated in 1 s of
CPU time. Moreover, as the simulation only occupies a single CPU core, up to 8 independent
training runs can be executed in parallel. This is used throughout this thesis, as the same
experiment is often repeated multiple times, starting from different initial random neural

52

3.4 IMPLEMENTATION

network weights. This is important to distinguish whether a change in performance can be
attributed to a functional change, or simply to a lucky or unlucky network initialization.

For comparison, this is considerably faster than the widely used 3D traffic simulation Carla
[Dos17], which approximately runs in real time, i.e., simulates 1 s of traffic in 1 s of CPU time,
and requires a recent GPU for this. A recent work that also implements a relatively fast RL
environment is introduced by Wang et al. [WKA21] and is stated to simulate approximately
500 transitions per second on server-grade hardware.

53

4 Direct Policy Learning: Behavioral
Cloning

Parts of this chapter have been published in [Sac+20b; Sac+21].

The previous chapter illustrated how trajectory predictions are generated by executing a driver
behavior model, denoted as policy. However, it is yet unclear where this policy comes from.
It is the missing link to close the simulation loop in Figure 3.1. Its task is to select appropriate
actions a ∈ A, i.e., steering and acceleration, given the current observation o ∈O of the local
environment of an agent. Therefore, this chapter addresses the reverse process of the previous
chapter: learning a policy from a set of observed trajectories. With this, the second connection
in the behavior triangle in Figure 1.2 is established.

Single-step Behavioral Cloning (BC) is a straightforward approach to learning the policy: For
this purpose, the trajectory dataset is played back in the simulator to obtain the observation
vector of each vehicle at each timestep. Simultaneously, the action of each vehicle at each
timestep is inferred by using an inverted kinematic model. With this, a dataset of observations
and corresponding actions is constructed, and a standard supervised learning task is formulated
to train a neural network that learns the mapping from observations to actions.

Due to its simplicity, single-step BC is commonly used in the literature for learning behavior
models and therefore discussed as a baseline in Section 4.1. However, related works remark
that a vehicle controlled by the learned policy tends to “slowly drift off the road” [Boj+16]
and that the method is “insufficient for handling complex driving scenarios” [BKO19]. The
reason for this is that the policy is typically trained on a dataset of regular driving, but makes
small errors during the execution in the simulation loop. These errors accumulate until the
policy is eventually confronted with observations that are so different from the training data
that it is incapable of selecting a reasonable action. This phenomenon is investigated in this
chapter and motivates the proposal of multi-step training in Section 4.2.

Multi-step training also is a supervised learning approach to obtaining a policy. Compared to
single-step BC, the full trajectory is predicted during training, instead of only the next action.
To predict the trajectory, the policy neural network is executed in the simulation loop. After
the trajectory has been generated, the deviation to a corresponding ground truth trajectory is
computed, and the gradient of this error signal is used to improve the policy.

While this core idea of multi-step training is simple, it entails the practical problem that the
gradient of the error needs to be backpropagated through each component of the simulation

55

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

environment at each time step, which is shown in Section 4.2.1. This is likely the reason why
no other works have proposed this approach earlier.

After introducing the single-step baseline and proposing multi-step training, behavior models
are trained with both approaches and compared in Section 4.3.

4.1 Single-Step Behavioral Cloning

Behavioral Cloning (BC) is a straightforward approach to learning a behavior model. The
fundamental idea is to train a regression model, typically an artificial neural network, to learn
the relation between observations and corresponding actions from a recorded dataset. The first
work in this direction by Pomerleau [Pom89] dates back to 1989, where the relation between
a camera image and the travel direction is learned for an early automated vehicle. First, a
dataset of camera images and corresponding travel directions is generated by a simulator.
Next, a neural network is trained to predict the travel direction from the camera image. The
learned policy is then deployed to demonstrate the learned ability of laterally controlling a
test vehicle at 0.5 m/s. Twenty-five years of advances in computing hardware, neural network
architecture and sensors enable [Boj+16] to replicate Pomerleau’s work, now demonstrating
automated steering of a car on public roads and highways with few human interventions.

Besides these much acclaimed end-to-end approaches to controlling an automated vehicle,
many works focus on the behavior modelling aspect, and exclude processing the raw sensor
data from the model. To this end, it is assumed that an upstream perception module detects
surrounding vehicles and estimates their state (position, speed, heading angle, shape). These
high-level inputs, together with the ego state and a map, now form the input of the situation
prediction module. As discussed in Section 2.6, the model input is a representation of the
local environment of the target vehicle; it can be encoded as a feature vector, image, or
graph. Many recent works follow this scheme to learn a driver behavior model: [MWK17]
compares different neural network architectures to learn a longitudinal-only car following
model; [WRK16; Len+17] train a combined longitudinal and lateral behavior model for
highways, and [Sch+19; Ber+21] train models for urban situations.

4.1.1 Approach

The previously mentioned works follow the idea of BC to train the behavior model.
The fundamental approach is illustrated in Figure 4.1. First the training dataset
D = {(o1,a1),(o2,a2), . . .} of observations and corresponding actions is constructed with the
simulator described in Chapter 3. Then, a neural network

πθ : O→ A, o 7→ â

56

4.1 SINGLE-STEP BEHAVIORAL CLONING

dconfl,1
φ10

φ5dyield

dr
dl

dpre

Reconstruct
observation

Reconstruct
action

actions

observations
δ

alon

Predict actions with NN,
backpropagate error,
follow gradient for training

(a) Construction of the observation and action dataset (b) Training of the policy neural network

Figure 4.1: Illustration of single-step behavior cloning: First (a), the observation dataset is
constructed by playing back the recorded trajectories in the simulator and evaluating the
observation vector for each vehicle at each time step. Simultaneously, the action at that
time step is reconstructing by using the inverse kinematic model. Then (b), the policy
neural network is trained on this dataset to predict the action that fits best to the
corresponding observation.

that maps from the observation space O to the action space A is trained to predict the action
â. The goal of the training is to minimize the loss function

ℓ(θ) =
∑

(ok,ak)∈D
e⊤
kWek (4.1)

with the per-sample error
ek = πθ(ok)−ak (4.2)

that evaluates the difference between the predicted and the actual action. If the action space
has two dimensions (e.g., acceleration and steering), the weight matrix W compensates for
the differences in scale of the components to ensure numeric stability, for example by setting
it to the inverse standard deviation of the actions in the training data, W = Σ−1

a .

The neural network training is performed by calculating the error gradient ∇ℓ(θ) using the
backpropagation algorithm [RHW86] and adapting the neural network parameters

θn+1← θn−α∇ℓ(θn) (4.3)

in the direction of the negative gradient iteratively until convergence with a small step width
α. Commonly, more elaborated optimization schemes such as Adaptive Moment Estimation
(Adam) [KB15] are employed to reduce the required number of iterations.

57

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

Instead of directly predicting an action, many related works predict a density over the action
space, which enables them to quantify the aleatoric uncertainty [HW21] about the action, i.e.,
the uncertainty that remains about the behavior after the observation is known. The policy

πθ(a = a|o = o)

is now a conditional density. In practice, the density is characterized as a bivariate Gaussian
[Sch+19], mixture of Gaussians [Len+17; MWK17], or piecewise uniform distribution
[MWK17]. This is realized by implementing the policy neural network

fNN,θ : o 7→ (µalon ,σalon ,µδ,σδ) (4.4)

such that it maps from an observation o to the parameters of the density, i.e., the mean and
covariance matrix of a 2D Gaussian distribution of acceleration and steering. The training
procedure remains unchanged, except for the loss function, which is now the negative log-
likelihood

ℓnll(θ) =−
∑

(ok,ak)∈D
logπθ(a = ak|o = ok). (4.5)

Effectively, training with this loss function amounts to finding an observation-conditioned
action density πθ(a = a|o = o) where the likelihood of the ground truth actions is maximized
by adapting the policy parameters θ. Given an observation, an action can be determined by
drawing a random sample from the density, or by simply emitting the mean value.

4.1.2 Baseline Model

As a baseline model, this thesis implements such a BC model, πBC. The model shall be
employed in the simulation framework described in Chapter 3. To obtain the dataset of
observations and corresponding actions, the trajectory dataset is played back in the simulator.
While the standardized observations can directly be extracted, the longitudinal acceleration
and steering action a= (alon, δ)⊤ are reconstructed by inverting the kinematic bicycle model
(3.3) to (3.5), as proposed by [Sch+19]:

alon,k = vk+1−vk−1
2∆t (4.6)

δk = arctan
 (lr + lf)∆ψk√

v2
k− (lr∆ψk)2

 (4.7)

with the difference quotient of the heading angle

∆ψk = ψk+1−ψk−1
2∆t (4.8)

58

4.1 SINGLE-STEP BEHAVIORAL CLONING

The speed in the dataset is always at least 0 m/s. The steering angle δk is undefined when
vk → 0. It is set to 0 in this case. The term under the square root in (4.7) cannot become
negative, as replacing the difference quotient ∆ψk with ψ̇ from (3.3) shows. It becomes 0
at |sinβk| → 1, but in practice, the slip angle |β| is always much smaller than 90◦. The loss
function (4.1) with W = diag(σ2

alon
,σ2
δ)−1 is used. The detailed training setup is described in

Section 4.3.1.

4.1.3 Discussion

The presented related works investigate different input representations, neural network ar-
chitectures, and action spaces. However, fundamentally, all formulate the same problem of
predicting the next action, given the current observation. This approach is susceptible to two
pitfalls described below: causal misidentification and distributional shift.

Causal Misidentification Lenz et al. [Len+17] and Wheeler et al. [WRK16] make an
interesting discovery: Both find that the most important feature for predicting the next action
is the current action, which is a component of their observation vector. Including the last
action as an input to the model seems intuitive to ensure that the sequential actions selected
by the model are smooth.

However, succumbing to this intuition is hazardous! No regression algorithm is able to uncover
causal relations on a fixed dataset of observations [Pea09], not even the most advanced neural
network architecture. Instead, regression models only learn the correlation between input and
output. In the case of [WRK16; Len+17], the models simply learn that the next action is the
same as the last action, as successive actions are highly correlated. However, the cause of
the behavior, which lies in the local environment of the vehicle, is ignored by the models.
de Haan et al. [dHJL19] describe this phenomenon as “causal misidentification” and provide
further examples.

Lenz et al. [Len+17] also investigate the effect of excluding the last action from the observation
and remark that “Surprisingly, the feed forward model [...] without the last action performs
best in the closed-loop simulation, although both NLL [the training loss] and intuition suggests
otherwise”. Clearly, without access to the last action, the model must have learned a behavior
model that better reflects the causal relation between local traffic situation and action, and
that therefore performs better in the closed-loop simulation.

Causal misidentification can principally not be ruled out in a supervised learning setting, but
this basic pitfall can be avoided by excluding those variables from the input of the model that
clearly have no causal effect on the output. This does not only include the past actions, but
also variables that enable inferring the last action, e.g., the sequence of past velocities. This is
the reason why the observation model (Table 3.1) in this thesis does not include past actions

59

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

or multiple past time steps, which would allow reconstructing past actions. While this protects
the model from causal confusion, it implies that potentially relevant information cannot be
used for the prediction. The consequences of leaving out this information are evaluated in the
experiments section.

Distributional Shift Even models that do not seem to be affected by causal confusion suffer
from the accumulation of errors during the execution of the policy. Schulz et al. [Sch+19]
describe that the model cannot compensate for the errors that emerge when the model is
deployed in a long-term simulation of more than 15 s. Bojarski et al. [Boj+16] remark: “The
network must learn how to recover from mistakes. Otherwise the car will slowly drift off the
road.” Similar issues are raised by [Pom89; BKO19], even with a vast amount of training
data.

The underlying phenomenon is known as distributional shift [RB10; RGB11; dHJL19] or
covariate shift [Bag15; Spe+21]: Standard supervised learning assumes that the distribution of
the training data is the same as the distribution of the data at execution time. This assumption
is violated when the model is executed in the simulation, because the selected actions influence
the ensuing observations. For example, the model might select an action that steers the car
towards the road boundary. As this new situation of driving close to the boundary was not
represented in the training data, the BC model can select an adequate action only by chance
and possibly steers the vehicle off the road.

The inability of the policy to extrapolate adequate actions beyond situations that are covered
by the training data is a fundamental property of neural networks. Roughly speaking, neural
networks are capable of interpolating for inputs that are close to its training data, but unable
to extrapolate for inputs that are far beyond the region that is covered by training data. This
is demonstrated for two simple functions in Figure 4.2. Without additional data or prior
assumptions on the underlying function, the correct continuation of the functions cannot be
learned, because any continuation seems equally plausible. The problem aggravates when the
input space is high-dimensional, as exceeding the space covered by training data in any of the
input dimensions can lead to erroneous extrapolation.

This illustrates that BC based on a dataset of successful driving alone is bound to fail.
Possible solutions to the problem are: 1.) Synthetically generating training data that shows
mistakes and corresponding corrections, as for example proposed by [Pom89; Boj+16;
BKO19; Ber+21]. However, this requires knowing possible mistakes in advance and requires
a lot of manual effort in generating realistic errors and corrections. 2.) Repeatedly executing
the learned BC policy in a simulator, and querying an interactive expert for the correct actions
to new observations that are experienced during this execution [RGB11]. These new pairs of
observations and actions augment the training dataset and enable the training of an improved

60

4.2 MULTI-STEP TRAINING

4 2 0 2 4
0

5

10

15 Ground truth
Predictions
Training data

4 2 0 2 4
2

0

2

Figure 4.2: Demonstration of the ability of neural networks to interpolate between and extrapolate
beyond their training data. The ground truth test functions are y = x2 and y = cos(x2).
For each test function, 10 neural networks are trained based on the highlighted 5 data
points. In both cases, the neural networks are able to approximate the test functions well
close to the training data, but are unable to extrapolate beyond the training data. For this
experiment, a multi layer perceptron with 1 input, 2 inner layers with 50 neurons and ELU
nonlinearities, and 1 output neuron is used.

policy. This approach however requires the availability of an expert or an oracle that can
provide correct actions for previously unseen observations.

Conclusion It is tempting to try to improve the single-step BC loss by experimenting
with different input representations, neural network architectures, and training techniques.
However, due to the phenomena of causal misidentification and distributional shift, the
single-step BC error does not allow reliable conclusions to be drawn about the performance
of a policy when executing it in a simulator. Thus, the focus of the following section and
chapters lies on improving the policy performance with respect to causal misidentification
and distributional shift.

4.2 Multi-Step Training

Instead of training a model to minimize the single-step error of predicting the next action, this
thesis and the associated publications [Sac+20b; Sac+21] propose to minimize the long-term
trajectory prediction error. This conceptual difference between single- and multi-step training
is illustrated in Figure 4.3. By minimizing the long-term error, the policy is forced to learn
to compensate for poor actions, i.e., handle distributional shift. Moreover, only a model that
correctly identifies the causal relations between observation and action is able to achieve low
long-term prediction errors.

61

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

(a) Single-step training (b) Multi-step training

Figure 4.3: Illustration of the difference between single- and multi-step training. During single-step
training, the next action is predicted for each observation along the trajectory, and the
error is computed. The goal of the training is to minimize this error. In contrast,
multi-step training predicts the full trajectory and minimizes the deviation between the
predicted and the ground truth positions at every time step. Hence, while single-step
training minimizes the prediction error over one simulation step, multi-step training
directly minimizes the long-term prediction error over multiple simulation steps.

4.2.1 The Need for a Differentiable Simulation

Despite the conceptual simplicity of the idea, there is one major challenge in its implemen-
tation: To train a model that minimizes the long-term prediction error, the policy must be
executed in the simulation environment during training. For a gradient-descent style mini-
mization of the trajectory prediction error, the gradient of this error with respect to the policy
parameters needs to be computed. It follows that the gradient of every component of the
simulation model must be computable, as the following calculation of the derivative reveals.

Suppose the simulation of one agent j is composed of three deterministic functions, as
described in Chapter 3: First, the kinematic model κ,

yjk+1 = κ(yjk,a
j
k), (4.9)

that determines the next state yjk+1 based on the current state and action ajk. Second, the
observation model λ,

ojk = λ(yjk,W
j
k), (4.10)

which determines the local observation vector ojk of the agent as listed in Table 3.1 based on
the state of the agent yjk and the surrounding world W j

k , which subsumes all information on
surrounding vehicles and the map. Third, the policy neural network πθ,

ajk = π(ojk, θ), (4.11)

62

4.2 MULTI-STEP TRAINING

which determines an action ak based on the observation. For clarity, the neural network
parameters θ are written here as an explicit input to the policy function π. Based on these
three functions, the prediction yjk at time step k is built up sequentially, by applying (4.9)
to (4.11) to first compute yj1, then yj2, and so on, starting from the initial state yj0 = xj0. Thus,
all variables ajk,o

j
k,y

j
k are dependent on θ, which is not explicitly stated in the following.

Let
dist(xjk,y

j
k) = ||pos(xjk)−pos(yjk)||2 (4.12)

evaluate the displacement between the predicted position pos(yjk) and the ground truth position
pos(xjk) in meters. The displacement is penalized via the quadratic loss function

f2(x) = x2. (4.13)

For training, the gradient of the loss with respect to the policy parameters θ needs to be
determined:

∂

∂θ
f2(dist(xjk,y

j
k)) = 2 dist(xjk,y

j
k)
∂

∂θ
dist(xjk,y

j
k) (4.14)

with
∂

∂θ
dist(xjk,y

j
k) = ∂dist(xjk,y

j
k)

∂xjk

∂xjk
∂θ

+ ∂dist(xjk,y
j
k)

∂yjk

∂yjk
∂θ

(4.15)

Hereby, the chain rule of multi-variable calculus is applied. The resulting first term can be
omitted, because the ground truth is not influenced by the policy, i.e., ∂xjk/∂θ = 0. The
second term is further expanded, again, by applying the chain rule,

∂yjk
∂θ

=
∂κ(yjk−1,a

j
k−1)

∂yjk−1

∂yjk−1
∂θ

+
∂κ(yjk−1,a

j
k−1)

∂ajk−1

∂ajk−1
∂θ

. (4.16)

Thus, the kinematic model κ must be differentiable with respect to both of its inputs yjk−1 and
ajk−1. The recurrence relation in the first summand makes clear that all partial derivatives
(∂yjk−1/∂θ,∂y

j
k−2/∂θ, . . . ,∂y

j
1/∂θ) need to be calculated to evaluate ∂yjk/∂θ. Further, the

newly occurring partial derivative

∂ajk−1
∂θ

=
∂π(ojk−1, θ)
∂ojk−1

∂ojk−1
∂θ

+
∂π(ojk−1, θ)

∂θ
(4.17)

with
∂ojk−1
∂θ

=
∂λ(yjk−1,W

j
k−1)

∂yjk−1

∂yjk−1
∂θ

+
∂λ(yjk−1,W

j
k−1)

∂W j
k−1

∂W j
k−1
∂θ

(4.18)

shows that also the observation model λ must be differentiable with respect to the predicted
vehicle state yjk−1. At this point, again, a recurrence relation of ∂yjk/∂θ to all past derivatives
emerges when (4.18) is inserted into (4.17) and then (4.16). The second term of (4.18) can

63

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

be omitted, because only the trajectory of one vehicle at a time is optimized, whereas the
surrounding vehicles are played back from a recording, hence W j

k−1 is not influenced by the
policy parameters and ∂W j

k−1/∂θ = 0.

This shows that all parts of the simulator need to be differentiable with respect to their inputs.
Thus, none of the popular off-the-shelf simulators such as Carla [Dos17] or Sumo [Lop+18]
can be used for executing the simulation loop during training. To avoid the need to manually
implement the gradient computations (4.14) to (4.18), the simulation is implemented in the
automatic differentiation framework Pytorch [Pas+19]. After running the simulation, Pytorch
can directly calculate the gradient of the loss function ∂f2(dist(xjk,y

j
k))/∂θ.

At this point, also the difference to single-step BC becomes clear: By assuming the past
states and observations to be fixed, and not a consequence of the past policy execution, i.e.,
assuming ∂yjk−1/∂θ= 0 in (4.16) and ∂ojk−1/∂θ= 0 in (4.17), the gradient of the actions with
respect to the policy parameters can be simplified to the gradient of the policy with respect to
its parameters and no recurrence relation emerges. Thus, as the name suggests, single-step BC
can be seen as a special case of multi-step training. In practice, one minor difference exists:
multi-step training for one single step predicts the next position by predicting an action and
applying the kinematic model. In contrast, single-step training as described in the previous
section directly predicts the next action, with the ground truth generated by inverting the
kinematic model. Functionally, both leads to the same result.

Relation to RNNs The gradient computation (4.15) to (4.18) is related to the backpropa-
gation through time algorithm [Zha+22, Ch. 9.7], which computes the gradients of RNNs.
Similar to the simulation model (4.9) to (4.11), RNNs are also recurrently executed to make
predictions of sequential data. The central difference to RNNs is that multi-step training
imposes more structure on the prediction problem, as it integrates a kinematic model and
limits the information available to the predictor by the pre-defined observation vector. These
interfaces with physical meaning allow the interpretation of any intermediate state as the
kinematic state of the vehicle at that point in time. In contrast, there is no straightforward way
to meaningfully interpret the intermediate states of a RNN. Moreover, the current state of a
vehicle regulates which observation is made next, thereby introducing a feedback loop that is
not part of regular RNNs. The difference between the multi-step structure and a regular RNN
is illustrated in Figures 4.4 and 4.5. Zyner et al. [ZWN20] propose a RNN-based trajectory
prediction, but ignore the influence of surrounding vehicles on the predicted vehicle.

4.2.2 Training

Once the simulation is implemented in a differentiable way, training a policy that minimizes
the deviations between actual and predicted position is simple. The policy is learned from

64

4.2 MULTI-STEP TRAINING

yj
0

Observe λ

Policy π

aj
0

Kin. Eq. κ

oj
0

W j
0 λ

π

aj
1

yj
1

oj
1

W j
1

κ

λ

π

aj
2

yj
1

yj
2

oj
2

W j
2

κ

λ

π

aj
3

yj
2

yj
3

oj
3

W j
3

. . .

Figure 4.4: Unfolded simulation loop during multi-step training. Inputs are blue and outputs are red.
Based on the initial vehicle state yj0 and the world state W j

0 , the observation model λ
generates the observation oj0. With this, the policy π determines the action aj0. The current
state and action are processed by the kinematic model κ, which yields the predicted state
yj1. Then, these steps are repeated until the desired number of prediction steps are reached.
Thanks to this structure, all intermediate variables are interpretable as observation, action,
and kinematic state. Figure adapted from [Sac+21], © 2021 IEEE.

yj
0 i Hj

0 RNN g

Process f

Predict h

yj
1

Hj
1

W j
0

g

f

h

yj
2

W j
1

Hj
2 g

f

W j
2

...

Figure 4.5: Concept of a functionally similar RNN, composed of four different neural networks
f,g,h, i: The initial hidden state Hj

0 is generated by the neural network i from the initial
vehicle state yj0. In each step, the recurrent network g emits the next hidden state Hj

k+1
based on the previous hidden state and the processed world state f(W j

k). The prediction
of the vehicle state yjk is performed by the network h based on the current hidden state
Hj
k . While it is conceivable that this structure learns something equivalent to a kinematic

model for the prediction, there is no regulation on which part of the world state is relevant
at which time step. In contrast, the observation model λ in Figure 4.4 always emits an
observation that precisely describes the relation of the vehicle to the surrounding world
through the features listed in Table 3.1. A standard RNN lacks the necessary information
about the relevance of different parts of the world state W j

k , which can lead to causal
misidentification and poor predictive ability.

65

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

Figure 4.6: Multi-Step Training: During early training, the predicted and ground truth trajectories
differ significantly. The training minimizes the pointwise deviations between the
trajectories, depicted in red, by adapting the policy parameters. To this end, the loss (4.19)
is defined as the sum of all of these squared errors. Predictions are terminated after H
steps, or when they leave the road. As the error gradient attracts them towards the ground
truth, they should remain longer on the track after the next training iteration. Figure from
[Sac+21], © 2021 IEEE.

a dataset D = {τ1, τ2, . . .} of H-step ground truth trajectories of individual agents and their
surrounding world, τj = ((xj0,W

j
0), . . . ,(xjH ,W

j
H)). For each trajectory, the simulation (4.9)

to (4.11) is executed from the initial state yj0 = xj0 with the current policy πθn to obtain the
corresponding predicted trajectory τ̂j = (yj1,y

j
2, . . . ,y

j
H). During training, only the focal agent

j is predicted using the policy, whereas the trajectories of the surrounding vehicles are played
back from the ground truth data; they are part of W j

k and therefore not dependent on the
policy parameters θ.

After making the predictions, the weighted loss

ℓtraj(θn) = 1
|D|

|D|∑
j=1

ωj
H∑
k=1

f2(dist(xjk,y
j
k)) (4.19)

is evaluated and its gradient with respect to the current policy parameters θn is determined by
automatic differentiation. The loss is visualized in Figure 4.6. All samples have a weight of
ωj = 1, unless otherwise stated.

The policy parameters are adapted according to the gradient of the loss iteratively using

θn+1← θn−α∇ℓtraj(θn) (4.20)

or any other improved gradient descent scheme; in this work, Adam [KB15] is employed.

Even for good behavior policies, large prediction errors arise occasionally due to the complex
situation dynamics. Consider a situation in which a vehicle is close to the roundabout entry
in an ambiguous situation. While the ground truth vehicle enters the roundabout swiftly,

66

4.2 MULTI-STEP TRAINING

the policy predicts the vehicle to stop at the entry to let another vehicle pass. The predicted
vehicle then needs to let multiple other vehicles pass before it can enter the roundabout. As a
consequence, a large prediction error arises. This error is not the result of a random Gaussian
deviation of the prediction, but rather of the inherent multimodality of the roundabout entry
situation. Minimizing the quadratic loss f2(x) = x2 in (4.19) however assumes that the
underlying error follows a Gaussian distribution. A more robust loss function

fH(x) =


1
2x

2, if |x|< ν

ν|x|− 1
2ν

2, if |x| ≥ ν
(4.21)

is proposed by Huber [Hub64]. Compared to a purely quadratic loss function, the influence of
large errors on the loss is reduced, because it increases linearly after passing a threshold ν.
As a result, the gradient of large errors

dfH(x)
dx

=

x if |x|< ν

sign(x)ν if |x| ≥ ν
(4.22)

is limited to a maximum value of |ν|, i.e., the influence of individual predictions is limited
during gradient descent in (4.14). For this reason, the Huber-loss fH replaces the quadratic
loss f2 in (4.19) for the experiments with a value of ν = 10[m].

Especially during early training, many predictions leave the track. Then, the assignment to a
road segment can become ambiguous. To prevent ill-defined observations from hampering
the training, the simulation of an agent is terminated early in this case. Correspondingly,
the loss of that agent cannot be evaluated until the final time step H , but only to an earlier
time step G<H . For this agent, the sum (4.19) needs to be truncated at G. This leads to a
counterintuitive phenomenon: Predictions that are terminated early often have a lower loss
than those that are predicted for the full horizon, because the last trajectory steps, which
typically have the highest prediction error, are excluded from the loss sum. Thus, a policy
that swiftly leaves the track from any starting point might have a lower loss than a policy that
remains on the track. However, as a gradient-based optimization (4.20) is used, the predicted
trajectories are effectively attracted towards the ground truth trajectories, as illustrated in
Figure 4.6. The absolute loss value is therefore not a meaningful instrument to compare
different training runs, but rather a tool to enable the gradient computation. The loss is also
truncated for predictions that are involved in a collision. To stimulate the policy to avoid
collisions and leaving the road, these truncated samples have an increased weight of ωj = 3
in the sum (4.19).

Multi-step training can also be interpreted differently: During training, the set of observations
that the model is confronted with is augmented, which alleviates the issue of distributional
shift visualized in Figure 4.2. While a dataset of regular driving only rarely contains situations

67

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

Ground Truth

(a) Training progress in trajectory space (b) Observations made during multi-step training

Figure 4.7: Training progress of one single vehicle during multi-step training. (a) During early
training (dark blue), the vehicle quickly leaves the track. Later (green-yellow), it learns to
stay on the track and travels approximately the same distance as the ground truth vehicle.
(b) During training, a single-step model is only faced with observations from the ground
truth data (red). The multi-step model experiences all colored points in the observation
space during its training. For example, while the single-step learner never observes
distances to the road boundary smaller than 1 m, these observations are regularly made by
the multi-step learner. This allows the model to learn how to react in these situations to
avoid leaving the road. For illustration purposes, only two dimensions of the
high-dimensional feature vector in Table 3.1 are visualized.

in which a vehicle is rapidly approaching the road boundary, this situation is regularly
experienced during the early phase of multi-step training, as visualized in Figure 4.7. This
increases the ability of the learned models to correct for mistakes, compared to single-step
training.

4.2.3 Related Works

Concurrently to the associated publications [Sac+20b; Sac+21], published in 2020 and 2021,
three other works [Suo+21; Ści+21; Sch+22] independently proposed to train a driving
policy by minimizing the multi-step trajectory prediction error by employing a differentiable
simulation in 2021 and 2022. All find that the trained policies are significantly more robust
than the single-step BC approach. However, the works differ significantly in their goals and
implementation:

Behavior Modelling With the goal of multi-agent trajectory prediction, Ścibior et al.
[Ści+21] propose to execute a simulation loop where each vehicle is controlled by the same
policy, similar to the procedure described in Chapter 3. In contrast to this thesis, the authors
use an image-based representation as an input to the behavior policy. The image is generated
by rasterizing a birds-eye-view of the map and surrounding vehicles of each agent at every

68

4.2 MULTI-STEP TRAINING

simulation step. The policy is realized as a CNN that uses this image as input to determine
the next action. Finally, a kinematic bicycle model is used for determining the next state.
As illustrated in the previous section, the observation model needs to be differentiable for
multi-step training. Thus, the rasterization procedure is implemented using a differentiable
rendering library, leading to large memory consumption and a reported training time of 6
weeks on a data center Graphics Processing Unit (GPU).

Suo et al. [Suo+21] have the goal of building a realistic multi-agent driving simulation. They
propose to use a joint driving policy, which receives as input the current and past states of
all agents and predicts their future trajectories jointly. As one central policy controls all
agents, actions can be selected coordinately. This contrasts the approach proposed in this
thesis, which predicts the actions of each agent individually, based on their observation. This
modeling is preferred, because it more accurately reflects the decision process of human
drivers, who also individually decide on their actions, instead of selecting them jointly. One
reason why a joint policy is employed in [Suo+21] is that the model predicts full trajectories at
each simulation step instead of the immediate next action, which requires more coordination
between the agents. When employing the policy in the simulation, predicting full trajectories
enables a trade-off between execution time and precision: Either only the first step of each
trajectory is executed before making a new prediction in the next simulation step, or multiple
steps are executed at once.

Scheel et al. [Sch+22] use multi-step training to learn a driving policy with the goal of directly
controlling an automated vehicle in real-world traffic. To do so, similar to this thesis, a policy
is learned by executing it in a differentiable simulation with the goal of matching recorded
ground-truth trajectories. Their central result is that a policy trained using a differentiable
simulator not only imitates driver behavior better than naïve BC and enhanced variants, but
also requires the least interventions when applying the policy in real-world traffic.

Minimizing the multi-step prediction loss (4.19) is not restricted to the training of neural
network policies. For example, in [Sac+20b], it is also employed for the calibration of a
parametric car-following model, the IDM [THH00]. This idea is not new and has also been
explored by [PS05; TK13a]. The fundamental difference to these approaches is that neural
network behavior policies typically have multiple orders more parameters than parametric
car-following models such as the IDM, which has 5 parameters. For this reason, car-following
models can be calibrated using gradient-free optimization algorithms, which does not require
a differentiable simulation. Efficient neural network training, on the other hand, is always
implemented as a gradient descent optimization scheme [GBC16, Ch. 8], and therefore
multi-step training requires a differentiable simulation to calculate the gradient of the loss
function with respect to the network parameters.

69

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

Differentiable Simulation in Other Domains The idea of using a differentiable simulation,
typically implemented in an automatic differentiation framework such as PyTorch, has been
explored in many other contexts. This is a broad field, such that a comprehensive overview is
beyond the scope of this thesis. Instead, only some interesting applications are listed in the
following.

One early example originates from the control theory problem associated with driving a truck
with a trailer in reverse to a target location [NW89]. The input of the neural network controller
are six state variables that describe the kinematic state of the truck-trailer combination. During
training, the trajectory of the truck is simulated by executing the combination of the neural
network controller and the kinematic state transition for multiple steps, starting from different
initial positions. Finally, the distance from the trailer to the target location is used as an error
signal. This error is backpropagated to adapt the weights of the neural network controller
during training. The authors demonstrate that the controller learns to steer the truck even for
adverse initial conditions.

Bächer et al. [BKS21] focus on the field of soft robotics. This is an especially challenging
field, because the dynamics of soft systems are highly nonlinear and hard to characterize. The
authors list three applications of differentiable simulations: First, a differentiable simulation
can be used to adapt simulation parameters to better characterize a real world system. For
example, it can be learned how a material deforms when a force it applied, and this function
can then be used for a simulation of that material. Secondly, differentiable simulations
can be used for actuation tasks, to learn a controller, similar to the work on controlling a
reverse driving truck. The third application that is mentioned is state estimation: This can
be formulated as an optimization problem with the goal of finding the state variables that
minimize the deviation between actual and expected measurements. By using a differentiable
simulation environment, a gradient-following optimization method can be employed to find
the state variables that most accurately explain the measurements.

In the field of physical simulations, Um et al. [Um+20] investigate the potential of integrating
a machine-learned correction model into a simulation loop to compensate for numerical
errors in the evaluation of a discretized Partial Differential Equation (PDE) solver. The idea
is demonstrated to improve the simulation accuracy for different applications such as the
simulation of turbulences and the simulation of combined advection and diffusion.

Another interesting application of differentiable simulations in biology is the protein folding
problem, where the goal is to predict the three-dimensional structure of a protein, based on
its amino acid sequence. For this task, Ingraham et al. [Ing+19] propose a differentiable
simulation with a learnable energy field function. The predicted protein structure is shaped
by this energy field, as the structure unfolds to minimize the free energy. This folding can
be stimulated step by step, and the difference between the predicted structure and the actual
structure is backpropagated through the simulation to learn the energy field function.

70

4.3 EXPERIMENTS

4.3 Experiments

This section demonstrates how a policy is learned with single- and multi-step training. To
this end, both approaches are trained under equal conditions—equal training trajectories,
network architecture, observation vector and evaluation situations. Single-step training is
executed with and without access to the last observation to demonstrate the phenomenon of
causal misidentification. Multi-step training is executed with trajectories of different lengths
to investigate their influence on the quality of the learned model.

The central questions that will be investigated in this experiments section are:

• Can a policy neural network learn to accurately predict the next action, given the current
observation, with single-step training?

• Is a policy learned with single-step training capable of controlling all agents successfully
in a simulated traffic situation?

• Can it be demonstrated that single-step training suffers from distributional shift and
causal misidentification?

• Does multi-step training reduce the trajectory prediction error, compared to policies
learned with single-step training?

• Is multi-step training robust to distributional shift and causal misidentification?
• In multi-step training, is training for more steps advantageous compared to training

with shorter trajectories?

4.3.1 Single-Step Training

As a baseline, a single-step model is trained. The dataset used for training and validation
is described in Section 3.3. The trajectories in both datasets are resampled to a rate of 5 Hz
to reduce correlation between consecutive trajectory points, thereby eliminating redundant
elements in the training set. The data is played back in the simulator to reconstruct the
observations and actions along the trajectories. The training dataset contains a total of 60,169
observations and corresponding actions. The validation dataset contains 11,694 items. The
training and validation data are extracted from different recordings, such that it is ruled out
that training and validation samples come from the same trajectories.

A standard fully connected neural network is employed to learn the policy. Given the observa-
tion vector, it predicts the corresponding acceleration and steering angle. The observation
vector (Table 3.1) with 22 features determines the number of inputs. Empirically, two fully
connected layers of 50 neurons each are sufficient to learn a good policy. The last layer has
two outputs, the acceleration and steering action. After each layer, a tanh nonlinearity is
used. A diagram of the architecture is shown in Figure C.1. To reduce overfitting, dropout
[Sri+14] with a probability of 0.2 is used after the two fully connected layers during training.

71

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

Figure 4.8: Training and validation loss during seven repetitions of single-step behavioral cloning
training. The progress is very similar, such that all curves overlap. The validation loss is
lower than the training loss, because dropout is only applied during training.

Figure 4.9: Ground truth action and prediction by the best learned model. Data points are plotted
transparently to emphasize the clusters in the data.

Briefly, this means that the output of each neuron is set to 0 with that probability. In effect,
the neurons in the following layer learn to not rely too much on a specific neuron, and are
forced find redundant representations of the input-output relation. Empirically, this technique
leads to networks that are less prone to overfitting and improves predictions on unseen test
data significantly [Sri+14]. During evaluation and testing, dropout is disabled. The model is
trained with the Adam optimizer [KB15] with the default parameters suggested in the paper,
listed in Appendix C.2.

Training the model for 100,000 epochs takes approximately 5 minutes on a NVIDIA RTX
2060. The training is repeated seven times to ensure reproducibility. The loss curves are
shown in Figure 4.8. All repetitions converge to similar values for the validation loss after
approximately 20,000 training epochs. The model with the lowest validation loss is used for
all further evaluations.

72

4.3 EXPERIMENTS

To visually evaluate the quality of the learned model, Figure 4.9 contrasts the predicted actions
with the actual actions for the validation dataset. The ideal result would be that all predictions
perfectly match the ground truth and therefore fall on the gray diagonal. While the plots show
that most predictions are close to the ground truth, it also reveals that the prediction problem
is ambiguous: For most observations, many different accelerations and steering angles are
feasible. This leads to the points where the prediction and the ground truth disagree, most
notably for the accelerations. One further reason for the prediction errors is the relatively
large standard deviation of the error of the ground truth acceleration (σa ≈ 0.26m/s2, c.f.
Appendix A), which is inherent to the acceleration as a quantity typically measured as a first
or second order derivative of an original sensor measurement.

To demonstrate the learned behavior, the policy is executed in a test situation. The underlying
simulation is executed with a step width of ∆t = 0.2s; the temporal sequence is shown
in Figure 4.10. For a better overview, only every seventh step is plotted. For this and
all following experiments, it is assumed that the route that a vehicle takes through the
roundabout is known a priori, i.e., whether a vehicle takes the first, second or third exit. This
is dictated by the policy, which acts goal-directed and expects observations that describe the
future road course, see Table 3.1. In a real-world prediction system, this information is not
known prior to the prediction. Instead, one prediction would need to be issued for every
possible junction along the road, and the probability of each prediction would need to be
estimated online. A practical approach to this by Schulz et al. [Sch+18b; Sch+18c] models the
problem as a dynamic Bayesian network and uses a particle filter or multiple-model unscented
Kalman filter to estimate the node probabilities. As the focus of this work lies on learning
improved behavior models, this is not implemented here and the following evaluations can
be considered an evaluation of the best-matching hypothesis. A quantitative evaluation of
the policy performance in the simulation is shown jointly with the multi-step models in
Section 4.3.3.

Action Feedback To illustrate the phenomenon of causal misidentification, another single-
step policy is trained with the last acceleration and steering angle as additional observations.
Everything else remains unchanged. Compared to the model that has no access to these
observations, this policy is significantly more successful in predicting the next action, as
Figure 4.11 illustrates in comparison to Figure 4.9. However, the additional information
interferes with the model learning the causal relation between observations and actions.
Instead, the model relies strongly on the last actions to predict the next actions. As a
consequence, many vehicles leave the track or collide when executing the policy in a closed
loop simulation, depicted in Figure 4.12. On the other hand, the model is not exclusively
replicating the last action and seems to have learned at least some degree of causal relation,
as some vehicles manage to successfully follow the road and enter the roundabout. Still,

73

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

Figure 4.10: Execution of the single-step model in closed loop, i.e., all vehicles are controlled by the
learned policy and see and interact with the other predicted vehicles. Vehicles from the
predicted situation are shown transparently, whereas the corresponding vehicles from the
ground truth situation are colored solidly. The situation is from the test dataset and has
not been used for training. Only vehicles present in the initial situation (top left) are
predicted. Clearly, the policy has learned to stay on the track in most cases and can
handle stop-and-go, right-of-way and unhindered driving situations. For many vehicles,
the prediction is accurate, especially when they are constrained by surrounding vehicles.
After 5.6 s, the predicted situation starts to diverge from the ground truth situation:
While the brown vehicle coming from east is predicted to enter the roundabout, the
corresponding ground truth vehicle waits at the entry to let the blue vehicle pass. This
has a knock-on effect on all following vehicles from east, whose predictions can now
enter the roundabout significantly earlier than their ground truth counterparts. Apart
from that, the prediction of the brown vehicle coming from north leaves the track after
2.8 s and the pink vehicle leaving the roundabout towards west drives off the track after
7 s.

74

4.3 EXPERIMENTS

Figure 4.11: Ground truth action and prediction by the policy that can observe the last acceleration
and steering angle. Compared to the model without access to this information in
Figure 4.9, the prediction of the next action is significantly better. In spite of this,
executing the policy in Figure 4.12 reveals that it is incapable of controlling vehicles in
closed loop, steering the majority of them off the track in a 10 s simulation.

this experiment demonstrates that including the last action in the observation vector leads to
undesired consequences when training a single-step model.

4.3.2 Multi-Step Training

Next, different models are trained using multi-step training as described in Section 4.2.2. The
central parameter that is investigated in this section is the length of the trajectories that are
used for training. Up to which point can a decreased prediction error justify the increased
training time when using longer trajectories?

To investigate this question, trajectory segments of different lengths are extracted from the
training and validation datasets. Training models with long multi-step trajectories can lead to
the phenomenon of vanishing or exploding gradients, which is well known from the training
of deep neural networks and recurrent neural networks [Zha+22, Ch. 5.4 and 9.7]. To avoid
this and to reduce the training time, the trajectories should consist of as few steps as possible.
For this reason, all trajectories are resampled to 1/∆t = 5Hz. This reduces the number of
simulation steps required to represent a trajectory by a factor of 6 compared to the original
sampling rate of approximately 30 Hz. The resulting time step length of ∆t = 0.2s can be
interpreted as the effective reaction time of the policy. As it is lower than the human reaction
time, which is estimated to be between 0.7 s and 1.5 s in braking situations [Gre00], it should
suffice to successfully imitate human behavior.

The trajectories used for training are 1 s, 2 s, 4 s, 8 s and 16 s long, which corresponds to
5 to 80 simulation steps. To obtain trajectories of the corresponding lengths, the original

75

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

Figure 4.12: Execution of the single-step model with access to the last action in closed loop: The
model mainly bases its prediction on the last action and predicts vehicles to keep an
approximately constant acceleration and steering angle. Thus, many vehicles leave the
track or collide. The ground truth evolution of the situation is omitted in this figure, as
the model is clearly incapable of making plausible predictions.

16s-Trajectories

8s-Trajectories

4s-Trj.

2s

Original 39s-Trajectory

1s

Figure 4.13: Slicing of trajectories: The original trajectory is sliced into as many non-overlapping
shorter segments as possible.

trajectories are sliced into non-overlapping segments. This slicing leads to a decreased dataset
size for longer prediction horizons. With every doubling of the trajectory length, the number
of trajectories is cut in half, as shown in Figure 4.13. For example, The original 60,000
trajectory steps are sliced into approximately 11,300 1 s-trajectories composed of 5 steps,
6,000 2 s-trajectories composed of 10 steps, and so on. In each training situation, one vehicle
is controlled by the policy, while the trajectories of all surrounding vehicles are played back
from the data.

To maintain comparability, the same neural network architecture as for single-step training is
used. Dropout is not applied, because it introduces noise to the actions, which amplifies after
multiple prediction steps and therefore destabilizes the training. For the optimization, Adam
[KB15] is used with default parameters.

76

4.3 EXPERIMENTS

0 200 400
Training epoch

0.2

0.4

0.6

1s
-D

isp
la

ce
m

en
t i

n
m

Pretrained
Not Pretrained

Figure 4.14: Displacement between 1 s-predictions and ground truth during training. The pretrained
model reaches a low displacement after few epochs, whereas the other models do not
achieve similar performance within 500 training epochs.

Despite using the Huber-loss, directly training policies for prediction horizons above 4 s
from scratch is instable due to the large positional errors and gradients that occur. Often, the
resulting policies fail to learn to stay on the track. For this reason, the training is executed
consecutively: First, the training of the 1 s-model is performed. Instead of using random
initial weights for the model, the parameters from the single-step model are used as a basis.
These provide a reasonable initialization and thereby reduce the training time of the model, as
depicted in Figure 4.14. Then, the 1 s-model with the lowest validation error is used as the
basis for training the 2 s-model. This continues until the training of the 16 s-model based on
the best 8 s-model. With this, stable results for all models can be achieved. Each model is
trained for 500 epochs. The effect of doubling the number of simulation steps while halving
the number of training trajectories cancels each other out, such that the training time of all
multi-step models is approximately 1 h on a single core of an i7-9700 CPU @3 GHz.

The performance of the learned models increases with the training length. Especially the
number of vehicles that leave the track or collide decreases and is the lowest for the 8 s- and
16 s-models. An example of the best 16 s-model along with the ground truth evolution of
the traffic situation is shown in Figure 4.15. The quantitative performance of the models is
evaluated together with the single-step model in the next section.

For the 16 s model, the performance between epochs fluctuates strongly and eventually
collapses to a policy that often leaves the track. As this does not occur for shorter prediction
horizons, this is likely due to the increasingly large errors that occur for 16 s-predictions.
These dominate the error gradient computation, but are often due to developments in the
situation that could plausibly have evolved differently. Example 4.1 shows an example of how
this applies to multi-step training.

77

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

Figure 4.15: Ground truth (solid) and closed loop prediction (transparent) of the 16 s-model in the
same situation as Figure 4.10. No vehicle leaves the track or collides. Most predictions
remain close to the ground truth throughout the whole prediction horizon, especially
when constrained by surrounding vehicles. One notable exception is the blue vehicle
coming from the south. While the ground truth vehicle enters the roundabout at 4.2 s, the
prediction stops at the entrance to let another vehicle pass. As a knock-on effect, the
predictions of the brown and gray vehicle coming from east can enter the roundabout,
whereas the corresponding ground truth vehicles need to wait until the ground truth blue
vehicle has passed.

78

4.3 EXPERIMENTS

Example 4.1: Divergence between prediction and ground truth

Consider the situation in Figure 4.15. At 4.2 s, the blue ground truth vehicle at the
southern entry drives into the roundabout, whereas the predicted vehicle stops to let
another vehicle pass. While both behaviors are plausible, the loss strongly penalizes
this divergence. During training, the error gradient attracts the prediction towards
the ground truth, thereby incentivizing the prediction to follow it into the roundabout,
regardless of the conflicting olive vehicle. As this divergence between the predicted
situation and ground truth is inherent to the nature of the problem and aggravates with
longer prediction horizons, it is pointless to train with prediction horizons beyond 8
to 16 s. As soon as the predicted situation diverges too strongly from the ground truth,
this phenomenon destabilizes the training and prevents the model from achieving zero
failures.

Another perspective on this is given by Metz et al. [Met+22]: The authors argue that while
a gradient can be analytically computed by backpropagating through an arbitrary number
of steps of a nonlinear simulation, the exact value gives only an illusion of precision, as the
outcome is dominated by random or chaotic effects. Two methods employed in this chapter,
starting the training with pre-trained models of shorter horizons, and using the Huber loss,
thereby effectively clipping the error gradients beyond a certain threshold, can be interpreted
as methods to address this problem of volatile gradients. However, predictions for horizons
much larger than 10 s are arguably subject to effects that no predictor could have anticipated
at the prediction origin, hence it does not seem sensible to extend multi-step training to longer
horizons.

Action Feedback Similar to the previous section, multi-step training is used to train a
policy that has additional access to the last acceleration and steering angle to investigate
whether it also suffers from causal misidentification. Clearly, knowing the current acceleration
and steering is helpful for short-term predictions up to 1 to 2 s, as it allows to predict the
continuation of the current kinematics in ambiguous situations, e.g., when a vehicle could
both, enter the roundabout or stop at the yield line. After multiple prediction steps, the last
action feature becomes uninformative, as it is an artifact of the prediction itself and carries no
information on the behavior of the ground truth vehicle. The policy has no means to discern
whether the information is reliable, because it is close to the prediction origin, or whether
it is unreliable, because it is executed at a later prediction step. The policy neural network
can only learn to either rely on the last action, improving the short-term and deteriorating the
long-term performance, or it learns to ignore the last action, resulting in no change compared
to the model that has no access to the last action. To resolve this flaw, the time since the
prediction origin is introduced as a third additional observation. Now, the policy can learn to

79

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

rely strongly on the last action at the beginning of the prediction, and put less weight on it at
later timesteps.

To evaluate the impact of action feedback, a policy with access to the last action and one policy
with additional access to the prediction time is trained. Apart from the additional observations,
the 1 s-models are trained from scratch for 1000 epochs, as no good baseline model exists.
All other training modalities remain unchanged. Again, the 8 s- and the 16 s-model have
the lowest collision and off-track rate. With the inclusion of the prediction time, the failure
rate decreases. However, it is still significantly higher than for the corresponding multi-step
models that have no access to the last action. When executing the learned policies in closed
loop simulation, the policies are reluctant to change the acceleration strongly, even if the
situation requires it. For example, many collisions occur when an inner-roundabout vehicle
should brake, because another vehicle has entered the roundabout before it. Instead, the
inner-roundabout vehicle maintains an approximately unchanged acceleration. The detailed
results and a comparison to the other models follow in the next section.

4.3.3 Model Comparison

To evaluate the learned models, two different evaluation settings are used. In the closed loop
regime, all vehicles in the traffic situation are controlled by the learned policy and interact
with the other predicted vehicles. This is how the model will be used in a real-world prediction
task. In the open loop regime, the policy controls only one single vehicle whereas all other
vehicles in the situation are played back from the recording. This is how the policy is executed
during multi-step training. Clearly, it is unrealistic to use this setting for the evaluation of
the prediction performance, because a lot of information about the future is provided by
the surrounding vehicles. However, compared to closed loop evaluation, it can be ruled out
that erroneous predictions of one vehicle influence the prediction of other vehicles due to
knock-on effects as shown in Figures 4.10 and 4.15.

The evaluation is performed on two datasets. First, it is performed on the test dataset at
the training roundabout. This dataset has not been used for training and can therefore be
used as a reference on how well the learned policy handles situations similar to the training
situation. It contains 118 10 s-situations with a total of 1432 trajectories. Secondly, the
evaluation is performed on a dataset that was recorded on another roundabout, containing
402 10 s-situations with 1918 trajectories. This roundabout has never been seen during
training. Evaluations on this dataset therefore show how well the learned policies generalize
to situations different from the training situation.

Failure Rates First, the failure rate of the single-step model (denoted base) and the five
multi-step models (trained on 1 s, 2 s, . . . , 16 s trajectories) is compared in the four combi-

80

4.3 EXPERIMENTS

base 1s 2s 4s 8s 16s 8s* 16s*
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fa

ilu
re

 ra
te

Off track (test)
Collision (test)
Off track (unseen)
Collision (unseen)

(a) Closed Loop

base 1s 2s 4s 8s 16s 8s* 16s*
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ilu

re
 ra

te

Off track (test)
Collision (test)
Off track (unseen)
Collision (unseen)

(b) Open Loop

Figure 4.16: Performance of the different models in closed and open loop during a 10 s simulation.
Number of trajectories used for evaluation: Ntest = 1432, Nunseen = 1918. The asterisk
indicates that the last action and prediction time is included in the observation.

nations of open and closed loop execution on the test and unseen dataset. Additionally, the
results for the best two models with additional action and prediction time input are shown,
indicated with an asterisk. The single-step model that suffers from causal misidentification is
excluded from any further evaluation, as it always performs significantly worse than the other
single-step model. A predicted trajectory is designated as a failure when it leaves the track
or when it collides with another vehicle. While these failure modes are rarely evaluated in
related works on trajectory prediction, they give an important insight into the plausibility of
the predictions.

The failure rates are depicted in Figure 4.16. The performance difference of all models
between closed and open loop execution is small. Generally, the number of vehicles leaving
the track is higher than the number of vehicles colliding. The failure rate in the test situation
in the known roundabout is always lower than the failure rate in the unseen roundabout. This
indicates that the training would benefit from training data in additional situations to learn a
more general policy.

The single-step base model has a failure rate between 10 and 20%. This is a major im-
provement over previous work [Sac+21], where the failure rate of a single-step model lies
between 60 and 80%. The improvement can likely be attributed to the use of a significantly
larger training set, the use of dropout and additional observations compared to the original
work. Surprisingly, the 1 s-model with failure rates between 30 and 50% performs worse
than the single-step model. Two reasons for this are the lack of dropout regularization during
multi-step training as well as the reduced amount of training data: While single-step training is
performed on approximately 60,000 training points, the 1 s-model is trained on approximately
11,300 non-overlapping 1 s-trajectories. For the models that are trained for longer horizons,
however, the benefits of multi-step training outweigh these disadvantages: The 2 s-model has
a slightly lower failure rate than the base model and the 16 s-model has the lowest overall

81

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

failure rate around 3% in both open and closed loop. Despite the inclusion of the prediction
time in the 8 s and 16 s-models, the policies with action feedback rely strongly on the last
action feature and produce significantly more collisions than their counterparts without access
to this information.

For the 8 s- and the 16 s-model, collisions are the dominant cause of failure. This hints to
one fundamental problem of all BC approaches: Pure BC offers no straightforward way to
explicitly train the model to brake before collisions or to remain on the track, as discussed in
example 4.1. Moreover, collisions and near-collisions occur only rarely in the training data.
Hence, learning a policy that handles these critical situations through imitation is hard. It
requires either a significantly larger dataset that contains these situations or a different way
of confronting the model with these situations. These issues will be addressed in the next
chapters.

Along-Track Prediction Error Next, the prediction quality of the models is compared.
To this end, the along-track prediction error is measured. Compared to simply measuring
the distance between a prediction and the ground truth, measuring the signed along-track
distance allows evaluating whether the predictions are behind or in front of the ground truth
vehicle. Failed trajectories are included in the evaluation, but only until the point of failure.
For example, if a prediction leaves the track, it is interrupted and hence cannot be further
evaluated.

For the 16 s-model in the closed loop test situation, the resulting error histogram of the
predicted position after 10 s is shown in Figure 4.17. The average offset is 0.62 m, i.e.,
the predictions are on average slightly in front of the ground truth. The distribution of the
prediction error does not follow a normal distribution, as a Shapiro-Wilk test [SW65] confirms
with p < 0.05. The distribution of the error has longer tails than a normal distribution. This
finding supports the use of the Huber-loss (4.21) for multi-step training, which is more robust
to outliers than the commonly used squared loss. Many of the large prediction errors can
be explained by different decisions about entering the roundabout between prediction and
ground truth vehicle, which also occurs in both Figures 4.10 and 4.15.

Similar error distributions arise for the other models. Instead of showing the full error
histogram for one prediction horizon, the course of the empirical mean and standard deviation
of the prediction error during 10 s closed loop prediction is depicted in Figure 4.18. As the
error distribution is not normal, the standard deviation can only be interpreted as a measure of
dispersion of the prediction error to compare the different models.1

1Another common measure for model quality is the prediction Root Mean Square Error (RMSE). Given the
empirical mean µe and standard deviation σe that are shown in Figure 4.18 and Figure 4.20, the RMSE can
be computed according to

√
µ2

e +σ2
e . For details, see Appendix B.1.

82

4.3 EXPERIMENTS

60 40 20 0 20 40 60
Longitudinal offset in m

0.00

0.01

0.02

0.03

0.04

De
ns

ity

Figure 4.17: Histogram and fitted normal distribution of the longitudinal displacement after a
10 s-prediction of the 16 s-model in the closed loop test situation. N = 818, estimated
normal distribution parameters µ= 0.62m,σ = 14.26m. A Shapiro-Wilk test confirms
the visual impression that the error is not normally distributed, p= 5 ·10−18.

In the test situation, all evaluated models exhibit similar errors with a mean offset close to
0 m and a similar course of the standard deviation. The models with action feedback feature a
slightly lower mean error and standard deviation for short prediction horizons. On the other
hand, the 8 s-model with action feedback has the largest bias for 10 s predictions in the test
situation. In the unseen situation, all predictions systematically lie behind the ground truth
positions. This effect is the strongest for the multi-step models that have been trained for
long horizons. One explanation for this is that the traffic density at the unseen roundabout
is significantly lower, such that vehicles are typically driving at higher speeds. None of the
models has learned to drive as fast as the situation allows. Rather, the models stop accelerating
after reaching the velocities typical for the training situation. Surprisingly, the single-step and
1 s-model exhibit the lowest prediction errors in the unseen situation, but have the highest
failure rates as discussed previously. Figure 4.19 shows a closed loop prediction of a traffic
situation to illustrate the bias in the prediction at the untrained roundabout.

The policies are trained in open loop, but executed in closed loop. This can be considered
another form of distributional shift, as it implies that the behavior of surrounding vehicles
differs between training and execution time from the perspective of one vehicle controlled by
the policy. To investigate the severity of this regime shift, the same evaluations are made in
open loop. The results are shown in the right part of Figure 4.16 and in Figure 4.20. As to be
expected, the prediction error is slightly lower in open loop simulation, because erroneous
predictions of one vehicle have no knock-on effect. Again, a large difference in performance
between the test situations and the unseen situations exists. However, the overall difference in
performance between open and closed loop execution is small, such that it can be concluded
that the shift from open loop training to closed loop execution is not problematic.

The comparison in this section shows that multi-step training for horizons above 2 s signifi-
cantly reduces the failure rates compared to the commonly used single-step BC. In terms of

83

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

0 2 4 6 8 10
Prediction horizon in s

0

5

10

15

Er
ro

r i
n

m

base
1s
2s
4s
8s
16s
8s*
16s*

0 2 4 6 8 10
Prediction horizon in s

10

0

10

Er
ro

r i
n

m

Figure 4.18: Empirical mean closed loop prediction offset (solid) and standard deviation (dashed)
during a 10 s prediction on the test roundabout (left) and the unseen roundabout (right).
Number of trajectories used for evaluation: Ntest = 1432, Nunseen = 1918. The asterisk
indicates that the last action and prediction time is included in the observation.
Note that the failure rate of the single-step and the 1 s model is larger than 20% in the
unseen roundabout. As predictions are aborted after a failure, these trajectories are not
included in the offset calculation. Hence, despite their seemingly good performance,
these models cannot directly be compared to the other models.

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

Figure 4.19: Ground truth (solid) and closed loop prediction (transparent) of a situation at the
untrained roundabout with the 16 s-model. While no vehicle collides or leaves the track,
the predicted vehicles enter the roundabout slower than their ground truth counterparts
and often lag several meters behind. Similarly biased predictions are issued by the other
multi-step models.

84

4.4 CONCLUSION

0 2 4 6 8 10
Prediction horizon in s

0

5

10

Er
ro

r i
n

m

base
1s
2s
4s
8s
16s
8s*
16s*

0 2 4 6 8 10
Prediction horizon in s

10

5

0

5

10

15

Er
ro

r i
n

m

Figure 4.20: Empirical mean open loop prediction offset (solid) and standard deviation (dashed)
during a 10 s prediction on the test roundabout (left) and the unseen roundabout (right).
Number of trajectories used for evaluation: Ntest = 1432, Nunseen = 1918. The asterisk
indicates that the last action and prediction time is included in the observation.

prediction accuracy, all models perform similarly. Feeding back the last action and prediction
time into the model slightly improves the prediction accuracy, but increases the failure rates
significantly and is therefore not further pursued. While most models are capable of low-bias
predictions in situations similar to the training situation, they show a systematic offset in the
situation at the unseen roundabout. Thus, to further improve the models, a larger dataset with
a more diverse set of training situations is required.

4.4 Conclusion

This chapter investigates two methods to train a policy neural network from a dataset of
trajectories. Single-step BC training has been described in various related works. It minimizes
the prediction error of the next action. To address the shortcomings of single-step training,
multi-step training is proposed. It minimizes the trajectory prediction error when executing
the model recurrently for multiple steps. In both cases, the training goal is to imitate the
behavior from a dataset, hence the name Behavioral Cloning.

The key findings that answer the research questions raised in the beginning of the experiments
section on page 71 are the following:

Single-Step Training Single-step training learns a policy that predicts the next action
on average correctly, given the current observation. However, the prediction error of the
acceleration has a relatively large spread, as shown in Figure 4.9. This can be explained with
the ambiguity of the problem: drivers select different accelerations when faced with the same
situation. Also, as the ground truth acceleration signal is effectively estimated as a second
order derivative from detected vehicle positions in a drone video, it is relatively noisy.

85

4 DIRECT POLICY LEARNING: BEHAVIORAL CLONING

The learned single-step policy is capable of controlling all vehicles in a simulated traffic
situation, as demonstrated in Figure 4.10. The predicted positions remain close to the ground
truth for most vehicle for multiple seconds.

Distributional Shift Yet, in some cases, some vehicles controlled by the single-step policy
slowly drift off the track. In the quantitative evaluation in Figure 4.16, approximately 10%
of all vehicles collide or cross the lateral road boundary. This can be explained with the
phenomenon of distributional shift, where the policy is confronted with observations during
execution that do not resemble the observations from its training dataset.

Causal Confusion Also, by artificially introducing the last action as an additional policy
input, the phenomenon of causal confusion can be demonstrated for the single step model:
This lowers the prediction error of the next action, shown in Figure 4.11, but it dramatically
increases the errors when executing the policy in the simulation, visualized in Figure 4.12.
The reason is that the model relies heavily on the last action as a predictor of the next action,
and puts less emphasis on the inputs that describe the environment. While this correlative
model of the action being approximately constant between two successive timesteps allows
for good single-step predictions, it is incapable of controlling the vehicles in the simulation
because it does not learn the functional relation between the observation of the environment
and the selected action.

Multi-Step Training The central contribution of this chapter is multi-step training, which
addresses the demonstrated shortcomings of the commonly used single-step training approach.
The idea is to predict not only the next action, but rather the full trajectory during training.
Then, the trajectory prediction error and the gradient of this error with respect to the policy
neural network weights is computed. This signal is used in a gradient-descent style for
training the policy to minimize the prediction error. One important prerequisite for the
automatic gradient computation is that each component of the simulation environment needs
to be differentiable, meaning that a specialized implementation of the traffic simulation in an
automatic differentiation framework such as PyTorch is required.

The models trained with multi-step training exhibit significantly lower failure rates than the
single-step models. Hence, it can be concluded that multi-step training is robust against
distributional shift. This can be explained by the model experiencing potential future obser-
vations when executed in the simulation during training, thereby learning to address them
and to compensate for errors, such as drifting towards the road boundary. This procedure
forces the policy to learn a functional model of the relation between observations and actions,
because only a functional model minimizes the deviation between predicted and ground truth

86

4.4 CONCLUSION

trajectories. The benefits of this can clearly be observed in Figure 4.16, where the policies
trained with 8 s or 16 s trajectories exhibit the lowest failure rates.

Multi-step training also reduces the effect of causal confusion, which is shown by training
a policy that additionally has access to its last action. Yet, the multi-step models with this
information exhibit higher failure rates than the models without it, indicating that there is still
some degree of causal confusion. As a consequence, the last action should not be included in
the observation vector.

It is also shown that multi-step models that are trained with longer trajectories (8 s or 16 s)
exhibit lower failure rates than those that are trained for shorter time horizons. However,
the benefit of training for longer simulation horizons wears off when chaotic failure modes
start to dominate the prediction error, as discussed in example 4.1. Hence, the optimization
procedure becomes increasingly instable for longer horizons. Training for 8 s has shown to be
a good compromise between the quality of the final model and the stability of the training.

On the other hand, even the most successful multi-step policy occasionally leaves the track or
collides with other vehicles. The reason for this is that the model is rewarded exclusively for
imitating the ground truth behavior during training, which sometimes contrasts with learning
a collision-free model, as illustrated in example 4.1. The next chapter introduces a method
that addresses this issue by explicitly penalizing vehicles that collide or leave the track.

87

5 Learning from Rewards:
Reinforcement Learning

This chapter builds on the ideas presented in [Kon+21; Sac+22a].

The previous chapter demonstrates how the space of observations is effectively augmented by
multi-step training, compared to single-step training. However, this augmentation is limited:
The policy can only be trained in situations for which training data is available, and it does
not experience situations or map topologies for which no training data exists. Moreover,
no explicit way to achieve goals such as avoiding collisions and staying on the track exists.
Therefore, this chapter explores Reinforcement Learning (RL), an alternative method to
learning policies.

While BC tries to find a policy that directly imitates the behavior in the training dataset, RL
seeks a policy that maximizes a manually specified reward function. This closes the next link
in the behavior triangle in Figure 1.2: deriving a policy from a reward function.

Fundamentally, RL methods gather experiences by interacting with the environment. The
experiences are then used to deduce which actions lead to high rewards and should be
reinforced, and which actions are to be avoided as they result in low rewards. To gather these
experiences, the learner must initially act randomly and later focus on selecting the successful
actions to fine-tune its behavior model. For this reason, RL is also characterized as learning
by trial and error [SB18].

Similar to multi-step training, RL requires a simulation environment as described in Chapter 3,
but removes the need for any real-world training data. Moreover, in contrast to multi-step
training, the simulation environment is not required to be differentiable. Instead, the gradient
is approximated stochastically, which will be shown in Section 5.1. The training can be
performed in arbitrary simulated situations and maps, thereby leading to more robust and
versatile policies than BC.

Many innovative applications of RL come from robotics, where the goal is often to learn a
control policy for tasks with high-dimensional nonlinear system dynamics, e.g., grasping or
walking [Iba+21]. Typically, one single robot interacts with an environment that remains
stationary during training in this setting. Most RL algorithms focus on this problem. Sec-
tion 5.1 describes this single-agent RL problem formally and summarizes the theory behind
the solution approaches employed in this thesis.

89

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

In a traffic situation, multiple independent agents interact with each other. For a plausible
prediction of the situation, this thesis not only needs to find a control policy for individual
agents, but the combined policies should also produce plausible interactions between different
agents, e.g., for the negotiation of right-of-way situations. Extensions of the single-agent
methods to address the multi-agent problem are described in Section 5.2.

The key contribution of this chapter lies in the application of the single- and multi-agent
RL algorithms to the problem of behavior modelling. To this end, the algorithms described
in the theory chapters are applied to the problem of one single vehicle learning to drive in
Section 5.3 and to the problem of learning a driving policy for the full simulation environment
with multiple interacting vehicles in Section 5.4. Hereby, the central challenges lie in the
implementation: To support the multi-agent setting and further extensions that are presented
later in Chapter 6, the RL algorithms need to be implemented from scratch. This also enables
a deep insight into their internal functioning. Moreover, a new reward function is presented
with focus on plausible behavior in curves and realistic interaction between vehicles, e.g.,
observance of right-of-way rules and cooperative merging behavior.

Commonly, the goal of RL is to find one single policy that maximizes the reward function. In
contrast, this work proposes a method to represent the heterogeneity of driving behavior. To
this end, Section 5.5 proposes an approach to represent a variety of different behaviors that
maximize different reward functions with one single flexible policy.

5.1 Fundamentals of Reinforcement Learning

This section introduces the fundamental terms of single-agent RL. Moreover, the policy
gradient RL algorithms applied in this thesis are introduced. The description and notation is
based on the book by Sutton and Barto [SB18]. A reader familiar with the topic can skip to
Section 5.2.

Partially Observable Markov Decision Processes A Partially Observable Markov Deci-
sion Process (POMDP) is an abstract problem formulation of a sequential decision process,
depicted in Figure 5.1. An agent interacts with their environment by making observations and
executing actions. Each of these transitions is assigned a reward. The goal of the agent is to
act in a way that maximizes the aggregated rewards during an episode, i.e., the sequence of
transitions until the simulation ends. The decision process is Markovian, because the action
of an agent changes the state of the environment in a partially stochastic way that depends
exclusively on the current environment state. It is partially observable, because the agent
receives a limited observation of the full environment state. The constituting components of a
POMDP are listed in Table 5.1.

90

5.1 FUNDAMENTALS OF REINFORCEMENT LEARNING

Reward rk

Observation ok

Action ak

Agent Environment

Figure 5.1: A Partially Observable Markov Decision Process: An agent makes observations of the
environment, and selects actions to maximize the received rewards.

Table 5.1: Components of a POMDP

Symbol Description

yk ∼ yk, yk ∈ Y Environment state: realization, rand. var., and space
ak ∼ ak, ak ∈ A Action: realization, rand. var., and space
ok ∼ ok, ok ∈O Observation: realization, rand. var., and space
p(yk+1|yk,ak) State transition density
p(ok|yk) Observation density
R : Y ×A→ R, R(y,a) 7→ r Reward function

In the notation, uppercase letters denote sets, bold lowercase letters denote random variables,
and regular lowercase letters denote concrete variables, e.g., samples from a random variable.
All variables are vectors, except for the scalar reward r. For example, the observation space is
O, with a concrete observation ok ∈O being a sample from the observation random variable
ok that is characterized by its density p(ok|yk). As usual in RL literature, sampling from a
random variable is indicated by a tilde, e.g., ok ∼ ok.

The simulation described in Chapter 3 can be interpreted as an instance of a POMDP, if
an additional reward is attributed to each transition. In this case, as shown in Figure 3.1,
the combination of kinematic model, simulation state, and observation model forms the
environment. The policy is executed by the agent and provides an adequate action for each
observation. From the perspective of one agent in a traffic situation, all other traffic actors are
part of the environment. In the first part of this chapter, the discussion and derivatives focus
on the single-agent case, i.e., one single vehicle driving through a lone world.

Solving a POMDP means finding a policy π : O→ A for the agent that maximizes the
obtained aggregated rewards

R(τ) =
H∑
k=0

γkrk with rk =R(yk,ak). (5.1)

Hereby, future rewards are attenuated with the discount factor γ ∈ (0,1], typically close to
1, to ensure convergence of the sum for infinite horizons H . Moreover, this establishes a
preference for collecting rewards quickly. Due to the exponential complexity of H-step

91

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

decision sequences1, practical solution approaches search for an approximately optimal
solution. Many solution methods exist that can roughly be categorized in model-based and
model-free approaches. Model-based approaches implement a model of the environment to
predict the influence of the actions of the agent on the environment state and the obtained
rewards. This model can be used for planning, for example by simulating the effects of
different action-sequences and executing the action that maximizes the predicted accumulated
rewards using Monte Carlo Tree Search [KWW22, Ch. 9.6]. One major hurdle of these
approaches is obtaining a model that accurately reflects the true environment dynamics for
planning. Also, the required computational effort makes them infeasible for quickly predicting
the evolution of an observed traffic situation.

Model-free RL, on the other hand, solves these two problems. This set of methods makes it
possible to learn a purely reactive behavior policy that directly selects an action based on the
observation without any planning. Moreover, the policy is learned through interaction with
the environment. This alleviates the need for an explicit formulation of an environment model
within the agent. On the other hand, model-free RL typically requires many interactions
with the environment until a good policy has been found. While there are some approaches
of learning by directly interacting with the real world, e.g. [Haa+19], most model-free
approaches learn in a simulated environment, which generates experiences risk-free and
typically much faster.

Model-free RL approaches can further be divided into tabular methods that operate on
countable, fully observable state spaces, and approximate methods, that operate on continuous
observation spaces [SB18, Ch. 9]. Approximate solution methods can be further differentiated
into value-based methods and policy-based methods, where only policy-based methods
support continuous action spaces [ZY20]. As the focus of this work is on partially observable
problems, the description of tabular and value-based methods is omitted for brevity, despite
many conceptual similarities. The reader is referred to [SB18] for an unbiased introduction to
RL.

One further differentiation needs to be made between On- and Off-Policy algorithms. On-
policy RL algorithms, such as Proximal Policy Optimization (PPO) [Sch+17a], improve
the policy based on the experiences collected while executing that policy in the simulation
environment. On the other hand, off-policy methods, such as Soft Actor Critic (SAC)
[Haa+18] and Deep Q-Network (DQN) [Mni+15], are designed to improve the policy not
only based on the experience from the most recent policy execution, but rather on a dataset
of previously collected experiences [Lev+20]. These methods have the potential to greatly
reduce the required amount of simulation during the training. Unfortunately, these methods

1Consider a decision problem with countable sets of |A| possible discrete actions and |O| possible observations
at each step. An exhaustive search for the best action sequence requires comparing all (|A||O|)H possible
episodes, which becomes infeasible for large planning horizons H and large or continuous action or
observation spaces.

92

5.1 FUNDAMENTALS OF REINFORCEMENT LEARNING

cannot be applied in multi-agent settings, because the environment dynamics is not stationary;
it depends on the changing policies of all agents in the environment. Thus, old experiences
become useless when the policy changes. For this reason, this thesis focuses on on-policy
algorithms, described in the next sections.

Similar to BC, the policy in approximate RL solution methods is realized using a function
approximator, typically a neural network. Like all function approximators, RL policies
cannot handle distributional shift, cf. Figure 4.2. A RL policy is thus incapable of selecting
appropriate actions for situations that do not resemble the training situations. However,
compared to BC, this can be addressed by ensuring that the model experiences a diverse range
of situations during training by initializing the simulation accordingly during training.

5.1.1 Policy Gradient Reinforcement Learning

Policy gradient RL is the domain of RL that enables learning policies for continuous observa-
tion and action spaces. The central idea is to represent the policy as a neural network, mapping
from observations to actions. The training is performed in a gradient ascent procedure.

For this, the gradient of the policy parameters with respect to the expected cumulated rewards
of trajectories, ∇θEτ∼πθ

{R(τ)}, must be estimated. In the following, Eτ∼πθ
{R(τ)} is

abbreviated as J(θ). Hereby, τ ∼ πθ denotes the process of generating a trajectory sample
τ by executing the stochastic policy πθ in the environment. Because this is equivalent to
drawing samples from a distribution, e.g., o∼ o, the same notation is used.

Once the gradient has been computed, it can be used to update the policy parameters using
gradient ascent,

θn+1← θn+α∇θJ(θn), (5.2)

equivalent to (4.20). Thus, in an iterative procedure, a set of policy parameters θ that
maximizes the expected accumulated rewards J(θ) is found.

While the differentiable simulation described in Section 4.2 can be directly employed for calcu-
lating∇θJ(θ), RL generally assumes a non-differentiable environment, and approximates the
gradient stochastically. This has the benefit of being applicable to arbitrary non-differentiable
environments, but entails increased computational complexity. To enable the estimation of
the policy gradient, the policy

πθ(a = a|o = o)

is implemented as an observation-conditional action density. Similar to Section 4.1.1, this
is realized by mapping the observations to the parameters of a random distribution, e.g., a
bivariate normal distribution. Then, the policy gradient can be estimated as follows:

93

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

The following derivation of the policy gradient (5.4) to (5.13) is taken from [Ach18],
based on the ideas presented in [Sch16, Ch. 2.6].
The probability of a trajectory

τ = ((y0,o0,a0, r0),(y1,o1,a1, r1), . . .) (5.3)

being generated by a stochastic policy πθ in a POMDP environment with known state
transition density p(yk+1|yk,ak) and observation density p(ok|yk) can be expressed as

p(τ |θ) = p(y0)
H∏
k=0

p(yk+1|yk,ak)πθ(ak|ok)p(ok|yk). (5.4)

For brevity, p(x = x) is always written as p(x). Taking the logarithm transforms the
product of the factors into the sum

lnp(τ |θ) = lnp(y0)+
H∑
k=0

(lnp(yk+1|yk,ak)+ lnπθ(ak|ok)+ lnp(ok|yk)) . (5.5)

For the following derivation, the “log-derivative trick” [Ach18]

d
dx
f(x) = f(x) d

dx
lnf(x) (5.6)

is used in (5.9).
With this, the policy gradient can be computed:

∇θJ(θ) =∇θEτ∼πθ
{R(τ)} (5.7)

=∇θ
∫
τ
p(τ |θ)R(τ)dτ (5.8)

=
∫
τ
p(τ |θ)(∇θ lnp(τ |θ))R(τ)dτ (5.9)

= Eτ∼πθ
{∇θ lnp(τ |θ)R(τ)} , (5.10)

and with

∇θ lnp(τ |θ)

= ������∇θ lnp(y0) +
H∑
k=0

((((((((((
∇θ lnp(yk+1|yk,ak) +∇θ lnπθ(ak|ok)+((((((((∇θ lnp(ok|yk)

=
H∑
k=0
∇θ lnπθ(ak|ok), (5.11)

94

5.1 FUNDAMENTALS OF REINFORCEMENT LEARNING

the policy gradient can be written as

∇θJ(θ) = Eτ∼πθ


H∑
k=0
∇θ lnπθ(ak|ok)R(τ)

 . (5.12)

In practice, this gradient can be estimated

∇̂θJ(θ) = 1
|DRL|

∑
τ∈DRL

H∑
k=0
∇θ lnπθ(ak|ok)R(τ) (5.13)

by repeatedly executing πθ in the simulation, storing the trajectories in a dataset
DRL, and replacing the expectation Eτ∼πθ

{·} in (5.12) with the empirical mean
1

|DRL|
∑
τ∈DRL(·).

To compute the policy gradient in any automatic differentiation framework, a pseudo loss
function

ℓRL(θ) = 1
|DRL|

∑
τ∈DRL

H∑
k=0

lnπθ(ak|ok)R(τ) (5.14)

is implemented whose gradient ∇θ is equal to (5.13) and can be determined automatically.
This derivation yields the simplest conceivable policy gradient scheme in Algorithm 2, called
“REward Increment = Nonnegative Factor x Offset Reinforcement x Characteristic Eligibility
(REINFORCE)” [Wil92]. In the algorithm, one iteration of collecting a new trajectory dataset
and improving the policy via the estimated gradient is called an epoch.

Algorithm 2 REINFORCE [SB18, Ch. 13], originally proposed by [Wil92]
1: Initialize policy πθ0 randomly.
2: for epoch i= 0..N do
3: Collect trajectory dataset DRL by executing the current policy πθi

in the environment.
4: θi+1← θi+α∇θℓRL(θi) ▷ Improve policy using gradient ascent
5: end for

The policy gradient (5.13) has an intuitive interpretation: ∇θ lnπθ(ak|ok) shows how to raise
the probability of selecting action ak after observing ok by changing the policy parameters θ.
Weighting the sum of these gradients with R(τ) yields the direction where the probability of
good actions (positive reward) increases and the probability of bad actions (negative reward)
decreases.

While Algorithm 2 illuminates the fundamental idea of policy gradient methods, the remainder
of this section presents important improvements required for the application to real-world
problems.

95

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

Example 5.1: Practical policy gradient

A car drives towards an obstacle. For simplicity, it always starts from the same initial
situation and selects a deceleration only once. It then continues to drive with constant
deceleration until it stops or collides. Its goal is to avoid a collision with minimal
deceleration. For this simplified situation, the policy π(a|o) = π(a) does not depend
on an observation. The policy is modelled as a Gaussian distribution π(a) =N (µ,σ2);
here, the policy parameters θ = (µ,σ) are simply the parameters of the Gaussian. In
this simplified example, the trajectory τ can be described via one single action a and
the trajectory returnR(τ) is equal to the reward r.
The simulation is repeated 8 times. In each simulation, a random acceleration is drawn
from the current policy, a ∼ π(a) = N (µ,σ). In some cases, the agent selects an
acceleration that avoids the collision (positive reward r, green), and in other cases it
collides (negative reward r, red). To ensure that the collision is avoided with minimum
deceleration, braking is also penalized, such that larger decelerations also lead to
negative rewards.
Each combination of action a and reward r is an experience, from which the experience
dataset DRL is formed. Based on this, the policy is improved in the gradient ascent
step. The training progress is illustrated in Figure 5.2, with the eight dots in each image
representing the randomly drawn action during each simulation.

0.0

0.5
0. 1.

5 0 5
0.0

0.5
2.

5 0 5

3.

0.0 0.2 0.4 0.6 0.8 1.0
Acceleration in m/s²

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
De

ns
ity

Figure 5.2: Four epochs of the simplest policy gradient

In the initial training epoch 0, the policy πθ0(a) = N (µ0,σ2
0) has a large standard

deviation and manages to avoid the collision in two cases, when the acceleration is

96

5.1 FUNDAMENTALS OF REINFORCEMENT LEARNING

−2 m/s2 or lower. Then, the policy parameters µ and σ are updated by performing one
step into the direction of the gradient

1
|DRL|

∑
(a,r)∈DRL

∇(µ,σ) ln π(a = a;µ,σ)
[s2/m] r

= 1
|DRL|

∑
(a,r)∈DRL

∇(µ,σ)

(
−(a−µ)2

2σ2 − 1
2 ln 2πσ2

[m2/s4]

)
r

(5.15)

to increase the likelihood of good actions and decrease the likelihood of bad actions.
This is a simplified version of (5.13).
Here, the actual gradient

∇(µ,σ)(. . .) =
 ∂
∂µ
∂
∂σ

(. . .) =
 (a−µ)

σ2
(a−µ)2

σ3 − 1
σ

 (5.16)

can be calculated by hand. Filling in the initial values µ0 = 0,σ0 = 2[m/s2] shows that
for an action with positive reward, e.g., a=−2[m/s2], the gradient is ∂/∂µ(. . .)(µ0) =
−1/2 [s2/m] and ∂/∂µ(. . .)(σ0) = 0, i.e., the mean action µ is shifted towards the good
action and the standard deviation is unchanged. For an action with negative reward,
e.g., a = 1[m/s2], the gradient is ∂/∂µ(. . .)(µ0) = 1/4 [s2/m] and ∂/∂σ(. . .)(σ0) =
−3/8 [s2/m], but weighted negatively by r in (5.15) and therefore effectively points
away from the bad action, also towards a lower mean action and larger standard
deviation.
The gradient for the ascent step is computed as the sum of the gradients of all experi-
ences (5.13). After the gradient ascent step, the mean µ1 of π1(a) is shifted towards the
good actions, and the standard deviation σ1 is decreased. The amount of change of the
policy is entirely determined by the learning rate α in (5.2) and exaggerated here for
illustration purposes. Typically, only small steps (α≈ 10−3[m2/s4]) are taken towards
the gradient to ensure stability in more complex settings. Hereby, dimensional analysis
reveals that the unit of α must be the inverse squared unit of the gradient, i.e., m2/s4.
In the next epoch, new actions are sampled from the updated policy πθ1 =N (µ1,σ2

1),
and the policy continues to be refined in epoch 2 and 3, as illustrated in Figure 5.2.
After these four training epochs, the policy selects good actions with high probability.
This example also illustrates the importance of starting the training with a large initial
standard deviation of the policy, to ensure that good actions can be sampled by the
policy.
Sampling from a stochastic policy is only a means to estimate the policy gradient (5.13).
After the training is finished, instead of sampling from the policy distribution, the mean
action is selected deterministically.

97

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

5.1.2 Advantage Estimates

Weighting the gradients ∇θ lnπθ(ak|ok) with the total trajectory reward R(τ) in (5.12)
to (5.14) leads to two practical problems: After the policy has been trained for a while and
receives high returns R(τ) for all trajectories, the gradients for all trajectories are weighted
approximately equal and the gradient towards the best trajectories does not stand out. More-
over, as actions are sampled from the policy in every simulation step, the returns have a large
variance, requiring many repeated simulations to obtain a low-variance estimate of the policy
gradient. Both effects slow down the optimization procedure.

Instead of weighting the pseudo loss

ℓRL,Ψ(θ) = 1
|DRL|

∑
τ∈DRL

H∑
k=0

lnπθ(ak|ok)Ψk (5.17)

and gradients in (5.12) to (5.14) with Ψk = R(τ), other weighting factors can be used
[Sch+18a]. By subtracting a baseline from R(τ), it can be ensured that the best trajectories
stand out, compared to other good trajectories that receive almost equally high rewards on
average. The baseline reflects the expected future rewards after observing ok. If the received
rewards exceed the expectations, the actions along the trajectory are advantageous and are to
be reinforced; otherwise they are to be avoided.

For this, the sum of rewards after step k is computed for each trajectory according to

R(τk:H) =
H∑
n=k

γn−krn (5.18)

with the infinite horizon case R(τk:∞) abbreviated as R(τk:).

The value function [SB18, Ch. 3.5]

Vπθ
(ok) = Eτk:∼πθ

{R(τk:)|ok = ok} . (5.19)

is the expected reward when following the policy πθ starting at observation ok.

With these two definitions, the baseline-adjusted gradient weight

Ψbase,k =R(τk:)−Vπθ
(ok) (5.20)

can be introduced for the gradient estimation in (5.17) [Ach18]. It is positive for trajec-
tories that exceed the expected rewards and negative otherwise. Hence, it estimates how
advantageous the action ak is, which explains the name “advantage estimate” [Sch+18a].

98

5.1 FUNDAMENTALS OF REINFORCEMENT LEARNING

While the true value function Vπθ
is infeasible to obtain in practical settings, because the

expectation in (5.19) requires integrating over all possible trajectories, it can be approximated
stochastically [Sch+18a]. For this, a neural network

V̂ψ :O→ R

with parameters ψ is trained to predict the future rewards by minimizing the prediction error

ℓ(ψ) = 1
|DRL|

∑
τk:∈DRL

(V̂ψ(ok)−R(τk:))2 (5.21)

on the trajectory dataset obtained during one epoch of the RL training using the gradient
descent technique Adam [KB15]. Each trajectory in the dataset is used with every starting
point k = 0,1, Thus, the value estimate is trained not only for the initial observations o0,
but for any observation along the trajectories.

Early Termination In practice, the simulation that is executed to obtain the trajectory
dataset DRL for training the value network V̂ψ is limited in several ways: First, the simulation
terminates after a fixed number of steps H . Secondly, it terminates as soon as the agent leaves
the map, or when it leaves the lateral road boundary.

Therefore, obtaining R(τk:∞), which is the prediction goal during the training of the value
network (5.21), is infeasible. The simplest remedy would be to train to predict the finite-
horizon return R(τk:H) instead. However, this destabilizes the training, as example 5.2
illustrates.

Example 5.2: Training the value network with finite-horizon returns

Consider a vehicle that is driving on a completely straight road. The vehicle is driving
with constant velocity along the track center. Due to this monotonous situation and
behavior, it makes the same observation o and receives the same reward r at every time
step. The simulation is executed for H steps with a discount factor γ = 1. The value
estimate V̂ψ is trained using all trajectory slices τ0:H , τ1:H , . . . , τH−1:H . Assuming that
the reward is positive, the obtained return R(τk:H) =∑H

n=k r = (H−k+1)r shrinks
as the starting point k increases.
If the value estimate (5.21) is calculated with R(τk:H) as the prediction target, this
causes contradicting prediction targets: The same observation o leads to different
returns R(τk:H), depending on the evaluated number of simulation steps H−k. This
phenomenon is an instance of state aliasing [WB91; Par+18a] and destabilizes the
training of V̂ψ.

99

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

Clearly, in real world settings, the observations and rewards during different time steps vary.
However, the fundamental problem of different lengths of trajectory slices remains: The
value of an observation does not only depend on the observation, but also on the number of
remaining simulation steps, which is unknown to the agent and value function.

For this reason, the infinite-horizon reward R(τk:) is approximated in equation (5.20) and
(5.21) using partial-episode bootstrapping [Par+18a]

R̂(τk:) =

R(τk:H), if termination due to own fault

R(τk:H)+γ(H−k+1)V̂ψ(o(H+1)), otherwise.
(5.22)

In the first case, termination due to own fault, for example because the agent crosses the
lateral road boundary, no further rewards are assigned after the terminal state at time step H .
The infinite horizon sum R(τk:∞) is reduced to a finite sum R(τk:H).

The second case applies to terminations of the simulation for which the agent is not responsible.
In these cases, the hypothetically obtained return during an infinite continuation of the
simulation is approximated. For this, the obtained rewards R(τk:H) during the remaining
H − k simulation steps are computed. Then, the estimated value of the final observation
V̂ψ(o(H+1)) is appended. Following the definition of the value function (5.19), this represents
the rewards during an indefinitely continued simulation from the final simulated observation
onward.

When minimizing (5.21) using gradient descent, it must be ensured that the gradient ∇ψ
is taken with respect to V̂ψ, but not with respect to R̂, which now also depends on ψ as a
consequence of the infinite horizon reward approximation (5.22). Otherwise, the loss ℓ(ψ) of
the value function estimator could not only be reduced by adapting the value estimate of the
current observation V̂ψ(ok) to match R̂(τk:), but also the other way around—by adapting the
future reward approximation R̂(τk:) to match the current value estimate V̂ψ(ok). This would
reverse the sequential nature of rewards along the trajectory.

Generalized Advantage Estimate While the baseline-adjusted gradient weight Ψbase,k

ensures that the trajectories that receive higher rewards than expected stand out compared to
others, it still suffers from a large variance, because it evaluates the reward sum R(τk:H) of
the execution of a stochastic policy in a stochastic environment. Schulman et al. [Sch+18a]
argue that a trade-off between the variance of the weight estimate and its systematic bias
can be made by evaluating the reward sum R(τk:k+n−1) for different numbers of steps n,
and approximating the ensuing rewards with the value estimate V̂ψ(ok+n), similar to the

100

5.1 FUNDAMENTALS OF REINFORCEMENT LEARNING

partial-episode bootstrapping (5.22). This leads to the definition of the n-step advantage
estimate

Â
(n)
k =−V̂ψ(ok)+R(τk:k+n−1)+γnV̂ψ(on)

=−V̂ψ(ok)+ rk +γ1rk+1 + · · ·+γn−1rk+n−1 +γnV̂ψ(ok+n) (5.23)

with the special cases n=∞, which evaluates the return of the infinite trajectory and is thus
equal to Ψbase,k, and n= 1, which evaluates only the next-step reward rk, and approximates
all following rewards by V̂ψ(ok+1). Any advantage estimate Â(n)

k can be used as the gradient
weight Ψ. Hereby, Â(∞)

k has the highest variance and the lowest bias, whereas Â(1)
k has the

lowest variance and the highest bias. The bias of the estimation depends on the influence of
the possibly erroneous value estimate V̂ψ, which has a large influence for Â(1)

k and a negligible
influence for Â(∞)

k .

With this, [Sch+18a] proposes the Generalized Advantage Estimate (GAE)

ΨGAE(λ,γ)
k = (1−λ)(Â(1)

k +λÂ
(2)
k +λ2Â(3)

k + . . .), (5.24)

the exponentially weighted average of the n-step estimators. Moreover, the authors provide a
formula for the efficient recursive calculation along a simulated trajectory without the need to
explicitly compute Â(n)

k , omitted here for brevity. The GAE allows trading off between bias
and variance of the gradient weight estimate through the parameter λ ∈ [0,1]. The special
cases can be shown to be ΨGAE(λ=0,γ)

k = Â
(1)
k and limλ→1 ΨGAE(λ,γ)

k = Â
(∞)
k [Sch+18a].

The idea of bias-variance trade-off can not only be applied to the advantage estimate, but
also to the value estimate: The current formulation of the value network (5.21) predicts the
infinite return approximation R̂(τk:) (5.22). This contains the sum R(τk:H), which has a
high variance for different rollouts of the same policy. Instead, this sum can be evaluated for
fewer steps, and the value estimate of the final observation is appended. The n-step return
approximation is obtained by adding V̂ψ(ok) to the n-step advantage estimate (5.23). For
n < H , this reduces the variance at the cost of increased bias. This leads to the definition of
the GAE return

R
GAE(λ,γ)
k = ΨGAE(λ,γ)

k + V̂ψ(ok), (5.25)

which is used as the prediction target during training of the value network (5.21). As in the
previous subsection, no further rewards are obtained after a termination due to own fault.

These improvements lead to the formulation of the GAE-enhanced policy gradient in Algo-
rithm 3, which has demonstrated practical applicability in two popular RL tasks [Sch+18a].

101

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

Algorithm 3 GAE Policy Gradient

1: Initialize neural network for policy πθ0 and value estimate V̂ψ randomly.
2: for epoch i= 0..N do
3: Collect trajectory dataset DRL by executing the current policy πθi

in the environment.
4: Compute ΨGAE(λ,γ)

k and RGAE(λ,γ)
k for every experience in the trajectory dataset.

5: Train value estimate V̂ψ to predict RGAE(λ,γ)
k on DRL by minimizing (5.21) using

gradient descent.
6: ĝ←∇θℓRL,ΨGAE(θ) ▷ Compute GAE policy gradient using pseudo loss (5.17)
7: θi+1← θi+αĝ ▷ Improve policy using gradient ascent
8: end for

5.1.3 Proximal Policy Optimization

The step width α is a key parameter in any gradient ascent or descent algorithm. Choosing too
large steps bears the risk of leaving the area where the linearization of the optimized function
through the gradient is approximately valid. On the other hand, too small steps lead to an
increased number of steps until convergence, resulting in prolonged training duration.

More so, the optimal learning rate α is different for every problem and might even vary for
different areas of the same optimization function. In supervised learning settings, this gives
rise to advanced gradient descent techniques such as Adam [KB15], which effectively estimate
the average and variance of the recent gradient updates to use large steps in monotonous areas
and small steps in fluctuating areas.

However, in contrast to standard supervised learning, the dataset DRL that is used to estimate
the policy gradient (5.13) changes with the policy πθ, rendering the pseudo-loss ℓRL,Ψ(θ)
in (5.17) non-stationary. This is the fundamental reason why any policy gradient algorithm
can only make a single (or few) steps towards the current maximum of ℓRL(θ) before it is
required to collect a new trajectory dataset DRL by executing the updated policy πθ. ℓRL(θ) is
a surrogate objective function that is only valid as long as the policy, and hence the dataset,
only changes marginally.

This gives rise to the idea of Proximal Policy Optimization (PPO) [Sch+17a]: Schulman et al.
[Sch+15b] propose to use importance sampling [RK08, Ch. 5.6]

∇θJ(θ) = Eτ∼πθ


H∑
k=0
∇θ lnπθ(ak|ok)Ψk

 (5.26)

= Eτ∼πθ,old


H∑
k=0

πθ(ak|ok)
πθ,old(ak|ok)

∇θ lnπθ(ak|ok)Ψk

 (5.27)

= Eτ∼πθ,old


H∑
k=0
∇θ

πθ(ak|ok)
πθ,old(ak|ok)

Ψk

 (5.28)

102

5.2 MULTI-AGENT REINFORCEMENT LEARNING

as a trick to continue using the old policy dataset for training. Sampling from the new
distribution τ ∼ πθ is approximated by sampling from the old distribution τ ∼ πθ,old and
weighting the samples according to the probability density ratio

q(θ) = πθ(ak|ok)
πθold(ak|ok)

. (5.29)

Clearly, this works only as long as the distribution of the trajectories generated with the old
policy πθ,old is reasonably similar to the distribution of those generated with the new policy
πθ. For this reason, the deviation between the two is measured by the relative change in the
probability density q.

This leads to the new pseudo loss function

ℓPPO(θ) =
∑
DRL

min(q(θ)Ψk,clip(q(θ);1− ϵ,1+ ϵ)Ψk), (5.30)

where the change q between the old and the new policy is bounded to be not larger than ϵ. The
pseudo loss can safely be maximized during each RL epoch without risking destabilizingly
large policy changes. This is in contrast to the previous policy gradient Algorithms 2 and 3,
which only take one single step towards the maximum in each training epoch. In (5.30), the
clip-function

clip(x; l,u) =


x, if l < x < u

l, if x≤ l
u, if x≥ u

(5.31)

limits the improvement in ℓPPO(θ): If the probability density ratio q(θ) > (1 + ϵ) or q(θ) <
(1− ϵ), no additional advantage Ψk can be obtained. The min-function ensures that this holds
only for increased advantage, but that there is no limit to how much a changed policy decreases
the advantage. The maximum change ϵ is a hyperparameter of the algorithm, recommended
being set to values between 0.2 and 0.3 [And+21]. Smaller values slow down the training
unnecessarily, whereas larger values lead to too large deviations between the distributions
τ ∼ πθ,old and τ ∼ πθ, thereby destabilizing the training.

The combination of PPO and GAE that is used to train the agents in this thesis is described in
Algorithm 4.

5.2 Multi-Agent Reinforcement Learning

Standard RL, as described in the previous section, is employed to learn a policy that maximizes
the obtained rewards of a single agent in a POMDP, see p. 90. This suffices to train an agent
to drive on a lonely map. If the interaction with other vehicles shall be learned, three

103

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

Algorithm 4 Proximal Policy Optimization with Generalized Advantage Estimate

1: Initialize neural network for policy πθ0 and value estimate V̂ψ randomly.
2: for epoch i= 0..N do
3: Collect trajectory dataset DRL by executing the current policy πθi

in the environment.
4: Compute ΨGAE(λ,γ)

k and RGAE(λ,γ)
k for every experience in the trajectory dataset.

5: Train value estimate V̂ψ to predict RGAE(λ,γ)
k on DRL by minimizing (5.21) using

gradient descent.
6: Maximize ℓPPO(θ) with GAE ΨGAE(λ,γ) using gradient ascent.
7: end for

requirements arise: First, the other vehicles must be part of the simulated world. Secondly,
they must be part of the observation vector, such that an agent can react to them. And thirdly,
the simulation environment must simulate the behavior of the other vehicles realistically, such
that the agent can learn to realistically interact with them.

While the first two requirements are already covered by the simulation environment described
in Chapter 3, the third requirement leads back to the beginning: Learning a behavior model
that plausibly interacts with other vehicles requires a behavior model that simulates the other
vehicles.

The simplest way to resolve this chicken and egg situation would be to control the surrounding
vehicles by a simpler surrogate policy, e.g., driving with constant velocity along the track
center. Then, the agent could be trained using PPO to successfully interact with these
surrounding vehicles. However, the learned policy would reflect the experiences during
training, implicitly encoding the assumption that other vehicles always drive with constant
velocity. When the learned policy is later executed by all agents, the environment dynamics
changes from the perspective of each agent. This can be considered another instance of
distributional shift between training and execution [Bha+18].

Partially Observable Stochastic Game (POSG) Instead, the learning problem can be
formulated as a POSG [HBZ04; BDK20], which is a generalization of a POMDP to multiple
agents. It consists of the components listed in Table 5.2. The general setup is illustrated
in Figure 5.3: Now, multiple agents interact with the environment simultaneously. At each
time step k, each agent j makes an individual observation. Interaction between the agents
becomes possible, because they can see relevant surrounding vehicles via their representation
in the observation vector (see Table 3.1). Based on this observation, each agent selects an
appropriate action using its behavior policy πj(aj |oj).

Equal to POMDPs, solving a POSG means to find a set of policies π1, . . . ,πj such that each
agent maximizes its individual return. No globally optimal set of policies exists, simply
because optimality cannot be defined with respect to multiple individual returns [OA16].

104

5.2 MULTI-AGENT REINFORCEMENT LEARNING

Table 5.2: Components of a POSG

Symbol Description

{1, . . . ,N} Set of N agents
yk ∼ yk, yk ∈ Y Global environment state: realization, rand. var., and space
ajk ∼ ajk, ajk ∈ Aj Action: realization, rand. var., and space of agent j
ojk ∼ ojk, ojk ∈Oj Observation: realization, rand. var., and space of agent j
p(yk+1|yk,a1:N

k) State transition density
p(ojk|yk) Observation density of agent j
Rj : Y ×Aj → R, Rj(y,aj) 7→ r Reward function of agent j

Observation, Reward

Action

Agent 1

Agent 2

Agent 3

Environment

Figure 5.3: A Partially Observable Stochastic Game: Multiple agents interact with the environment
simultaneously. At each step, each agent receives a local observation of its surrounding
and selects an appropriate action. A reward is assigned to each of these transitions.

Instead, if the search for individually optimal policies converges, it must converge to a set of
policies where no agent can improve its return by changing its policy while the other agents
keep their policies fixed. This stable point in the policy space is called a Nash Equilibrium
[Nas51; Bin07; OA16]. The existence of at least one such equilibrium can be proved only for
simple games [Nas51].

Solving the POSG One approach to finding the return-maximizing policies is to switch to a
centralized regime, where one “super agent” receives the concatenated observations from all
agents, and selects an action for each to maximize the sum of returns of all agents [BBD08;
GEK17]. Effectively, this converts the POSG into one large POMDP that can be solved with
single-agent RL algorithms. However, assuming a centralized super agent that has access to
all individual observations is an implausible model for a traffic situation, in which each driver
observes, reasons, and acts individually. This would remove the need to coordinate actions
between independent drivers, e.g., when negotiating right-of-way situations. Moreover, as the
sum of returns is maximized, this approach fails to model uncooperative behavior where one
driver selects actions that benefit himself, but harm the surrounding vehicles.

A more general solution approach to POSG is independent learning. The fundamental idea is
to separate the multi-agent problem into N single-agent POMDPs, where each agent treats
the other agents as a part of the environment [Tan93]. Then, standard RL algorithms can
be applied to determine an optimal policy for each agent. However, the POMDPs resulting

105

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

from this separation are not stationary [BBD08; Low+17; GEK17]: As the policies of
the surrounding agents change, the dynamics of the simulated environment changes. This
prohibits the use of off-policy RL algorithms, such as Soft Actor Critic (SAC) [Haa+18],
because they use experiences from an experience buffer of earlier policy rollouts, which
become invalid when the environment dynamics change.

PPO, as described in Section 5.1.3, is an on-policy method that optimizes the policy exclusively
on the last policy rollout and is thus robust to changing environment dynamics. A recent
work by de Witt et al. [dWit+20] suggests that an independent variant of PPO dubbed
Independent Proximal Policy Optimization (IPPO) achieves state-of-the-art performance on
the challenging StarCraft Multi-Agent Challenge (SMAC) benchmark [Sam+19]. In SMAC, a
real-time strategic video game, multiple agents from one team need to cooperate to overpower
the opposing team. Additional experiments by Yu et al. [Yu+22] also indicate competitive
performance of IPPO on three more MARL benchmarks.

While SMAC is fully cooperative, i.e., all agents try to maximize a joint reward, the agents in a
traffic situation have individual and sometimes competing goals, e.g., when a driver squeezes
into a roundabout and forces another vehicle to brake. Still, the results from [dWit+20; Yu+22]
inspire this thesis to apply IPPO to the problem of learning a driving policy for multiple
interacting agents.

Parameter Sharing For simplicity, it is assumed that the vehicles in the traffic situation
are homogeneous, i.e., all vehicles follow the same kinematic bicycle model described in
Section 3.1 with equal parameters, and their action ranges (acceleration and steering) have
equal boundaries. Moreover, each agent is assigned rewards through the same reward function.
Intuitively, if all agents have equal properties and goals, then they should also behave equally
when faced with the same observation. Otherwise, if one behavior would result in higher
expected returns, then all agents should act according to this return-maximizing behavior.
With this presumption, instead of training one policy per agent, it suffices to train only one
single policy that is executed by each agent. This technique is referred to as parameter sharing
[GEK17] and has been subject of research for more than three decades [Tan93].

During training, all agents interact simultaneously with the environment by making observa-
tions, selecting actions according to the same policy πθ(a|o) and receiving rewards. The only
difference to the single-agent case listed in Algorithm 4 is that the dataset DRL is constructed
from the collective experience of all agents. Compared to concurrent learning of individual
policies based on individual experience datasets, this has the additional advantage that much
more experiences are available for training the policy.

106

5.3 EXPERIMENTS: SINGLE-AGENT REINFORCEMENT LEARNING

15 m

Figure 5.4: The oval track used for single-agent RL consists of two straight segments of 150 m length
and two circular segments with radius r = 15m. The track width is 5 m.

5.3 Experiments: Single-Agent Reinforcement Learning

This section applies the ideas of single-agent RL from Section 5.1. The goal is to demonstrate
the presented combination of PPO and GAE (Algorithm 4) with a simple example to gain an
insight into its functioning. To this end, a single agent is trained to drive on the oval track
shown in Figure 5.4, while maximizing the reward. The simulation from Chapter 3 is used.
As this section is concerned with single-agent RL, the observation vector consists only of
features relevant to this setting. Concretely, the observation (see Table 3.1) consists of the
current speed, the distances to both road boundaries, the heading angles ψ0...20, and the road
curvatures c0...20.

The central questions investigated in this experiments section are:

• How can the previously introduced algorithms PPO and GAE be applied to learn a
driving policy?

• What are the terms and relative weights of a reward function to teach an agent to drive
with RL?

• Which factors have to be considered to accelerate the training process?

5.3.1 Reward Function

The rewards are chosen to encourage progress along the track as well as avoiding discomfort
due to accelerations. The agent should drive as fast as possible, while maintaining comfortable
accelerations. The general reward function for this scenario

R(v,alon,alat) = ωvelRvel(v)−ωacc,lonRacc,lon(alon)−ωacc,latRacc,lat(alat)+Rofftr (5.32)

107

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

encourages higher speed v and penalizes longitudinal and lateral accelerations alon and alat.2

The weights ω are used to balance the importance of the different reward terms. Rofftr is a
constant penalty that is assigned when the vehicle leaves the track.

The terms of the reward function are deduced under the following set of assumptions:

• Drivers want to make progress along the track, hence their speed must be rewarded.
• The lateral acceleration is penalized according to the squared magnitude a2

lat.
• There exists an optimal lateral acceleration a∗

lat independent of the road curvature. The
trade-off between the reward gained by the speed of the vehicle and the penalty received
for the lateral acceleration should be optimal for this lateral acceleration, regardless of
the road curvature. Hence, a driver would adapt its speed to maintain alat = a∗

lat on a
curved track, driving faster on larger radii and slower on smaller radii.

To deduce reward function that fulfills these properties, consider a vehicle driving on a circular
track with radius r. The velocity that corresponds to the optimal lateral acceleration a∗

lat on
a perfectly circular track is v∗ =

√
a∗

latr. What are the terms of a reward function that is
maximum for this velocity on a circular track?

With alat = v2/r, the reward function for this special case can be written as

R(v,alon) = ωvelRvel(v)−ωacc,lonRacc,lon(alon)−ωacc,latRacc,lat(v2/r)+Rofftr. (5.33)

In the stationary case, the vehicle is driving with a constant velocity, such that the reward for
the longitudinal acceleration can be disregarded. The maximum reward with respect to the
velocity is obtained, when

d
dv
R(v,alon) != 0 (5.34)

is satisfied. This can be written as

ωvel
dRvel(v)

dv
!= ωacc,lat

dRacc,lat(v2/r)
dv

. (5.35)

With this, appropriate functions for Rvel and Racc,lat can be chosen, such that the initial
requirement, maximum reward for a specific lateral acceleration, is satisfied. It is common to
assign a quadratic penalty for the acceleration [Nau+20],

Racc,lat(v2/r) = (v2/r)2/[m2/s4]. (5.36)

2The reward functionR(y,a) was previously defined to depend on the state y and action a. As the speed and
accelerations are constituents of these vectors or can be derived from them, they are directly used as the
arguments of the reward function here for clarity.

108

5.3 EXPERIMENTS: SINGLE-AGENT REINFORCEMENT LEARNING

From (5.35), it follows that the reward for the velocity must be logarithmic,3

Rvel(v) = c1 ln(v/[m/s])+ c2. (5.37)

Only this Rvel(v) ensures that the maximum of the total reward function is obtained for a
specific lateral acceleration, as the following shows. The constants are set to c1 = 1, c2 = 0,
because c2 does not influence the position of the maximum and c1 can be considered a part of
ωacc,lat.

Differentiating both rewards with respect to v according to (5.35) equates to

ωvel/v
!= ωacc,lat4v3/r2/[m2/s4]. (5.38)

It follows, that the maximum reward is obtained when the comfortable acceleration

v2/r/[m/s2] =
√

ωvel

4ωacc,lat
= a∗

lat/[m/s2] (5.39)

is reached. In other words, by setting the weights according to

ωvel

ωacc,lat
= 4(a∗

lat)2/[m2/s4], (5.40)

the maximum reward on a curved track is obtained, when driving with v∗, such that the lateral
acceleration a∗

lat occurs. Driving faster would lead to a higher acceleration penalty, and driving
slower would lead to lower rewards for the velocity.

The penalty for the longitudinal acceleration can be set independently. Assuming that the
driver is equally averse to longitudinal and lateral accelerations, as indicated by [Nau+20], the
weights ωacc,lon = ωacc,lat = ωacc for both penalties are chosen equally and the longitudinal
acceleration is also penalized quadratically.4 With this, the reward function used in the
following is

R(v,alon,alat) =ωvel ln(max(v/[m/s], ε))−ωacc(alon/[m/s2])2−ωacc(alat/[m/s2])2 +Rofftr.

(5.41)

The weights are set to ωvel = 1/ ln(10), ωacc = 1/(9 ln(10)), and leaving the track is penalized
withRofftr =−100. Following (5.40), this corresponds to an optimal acceleration of a∗

lat =
1.5m/s2 in curves. As only the ratio ωvel/ωacc is relevant for the optimal lateral acceleration,

3To avoid the indefiniteness of the logarithm at 0, the rewardRvel is clipped to a minimum value of ln(ε) with
ε= 0.1 in practice, i.e.,Rvel(v) = ln(max(v/[m/s],ε)). The ensuing case discrimination is ignored in the
following for brevity, as it can be assumed that the optimal speed v∗ is larger than 0.1m/s.

4In fact, any other exponent k ≥ 1 for the absolute acceleration terms could be used and also leads to a
maximum reward for a specific constant lateral acceleration. The calculations are omitted here for brevity.

109

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

the weights ωvel and ωacc are divided by ln(10) to ensure that a reward of 1 is obtained when
the vehicle is driving with 10 m/s at no accelerations.

5.3.2 Learning to Drive

With the reward function (5.41), the training can be started. All training parameters are listed
in Table C.3, and described in the following. In each training epoch, 50 trajectories are
simulated and aggregated in DRL to evaluate and improve the current policy. For the training,
PPO is used in combination with GAE (Algorithm 4). Given an observation o, the policy
neural network

fθ : o 7→ (µacc,µδ, ln(σacc), ln(σδ)) (5.42)

emits the mean (µacc,µδ) and standard deviation (σacc,σδ) of the acceleration and steering
angle, respectively. The standard deviation is independent of the observation; it exclusively
depends on θ and typically decreases during training. Since the output of the neural network
is not limited to positive values, the standard deviation output is represented as a logarithmic
value. To guarantee positive standard deviations, this value is then processed through an
exponential function. Apart from the additional output of (ln(σacc), ln(σδ)) and the reduced
number of inputs, the network architecture is identical to the networks used in the experiments
on BC. The architecture is depicted in the appendix in Figure C.1.

The mean action vector µa = (µacc,µδ)⊤ and the diagonal covariance matrix
Σa = diag(σ2

acc,σ
2
δ) parameterize the policy distribution

π(a|o = o) = tanh(N (µa,Σa)), (5.43)

which is a squashed Gaussian distribution. Applying the tanh function to the normal distribu-
tion ensures that all actions are bounded in (−1,1). The properties of the squashed Gaussian
distribution are described in detail in Appendix B.2.

As the covariance matrix is diagonal, the distribution of the acceleration and the steering is
treated as two separate univariate distributions with scalar µ and σ in the following. The
initial policy standard deviations σ are set to 1, such that the squashed Gaussian distribution
is approximately a uniform distribution on (−1,1) for both, acceleration and steering, see
Appendix B.2. During training, the standard deviation typically decreases. For σ ≪ 1,
the resulting distribution resembles a Gaussian distribution N (tanh(µ),σ). Finally, the
actions are scaled and shifted in the simulation environment: The acceleration alon is scaled
and shifted to be between −7 m/s2 and 3 m/s2, and the steering angle δ is scaled to be in
(−π/7,π/7) rad.

110

5.3 EXPERIMENTS: SINGLE-AGENT REINFORCEMENT LEARNING

(a) Median R(τ) and single-epoch returns R(τ)
(scattered, cyan) of one single training run.

(b) Median returns R(τ) of 50 trajectories during
seven independent training runs.

Figure 5.5: Undiscounted returns during RL training. The undiscounted finite return is the sum of
rewards along one simulated trajectory. During each epoch, 50 trajectories are simulated
with the returns scattered in (a). For a comparison of different training runs, only the
median return is displayed in (b). The median is used instead of the mean, because it is
more robust to a fluctuating number of outliers (leaving the track).

To ensure a diverse set of experiences, the vehicles are initialized at a random position along
the track, with a random heading, speed and lateral offset.5 Each simulation is executed for
H = 200 steps, or until the agent leaves the track. The simulation step size is ∆t = 0.2s.
Empirically, shorter simulation durations prevent the agent from experiencing the long-term
effects of their actions, e.g., accelerating leads to an immediate penalty, but higher long-term
rewards for the velocity.

The training is inherently stochastic, because the policy and value network are initialized
randomly, the initial situations are randomized, actions are sampled from the policy, and
the experience samples on which the training is performed are also sampled randomly. To
ensure reproducibility, the training is repeated seven times. The resulting reward curves are
shown in Figure 5.5b. Training is performed for 1000 epochs, which takes approximately 1 h
on a single core of an Intel i7-9700 @ 3 GHz. After approximately 300 training epochs, all
training runs converge to similar values between R(τ) = 130 and R(τ) = 135 for the median
return. The returns do not increase significantly during the additional training epochs. The
average reward per step is r̄ =R(τ)/H ≈ 0.66. Most of the training time is spent for running
the simulation, whereas the PPO step is relatively fast. Thus, there is no benefit in executing
the neural network training on a GPU. With 50 trajectories of 40 s duration, the RL agent
experiences 33 min of driving per training epoch.

Following the recommendation from [Sch+17a], training is performed by executing multiple
optimization steps for the PPO pseudo loss ℓppo(θ) with randomly drawn samples (“mini-
batch”) from the experience dataset DRL per training epoch. Compared to an optimization on
the full dataset, this has been shown to yield policies with better performance [And+21].

5Concretely, the initial heading is distributed according to ψinit ∼ N (0;σ = 0.1rad), the initial speed is
uniformly distributed, vinit ∼ U(0,20m/s), and the lateral offset is ∼N (0;σ = 0.15m).

111

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

(a) Median R(τ) (orange) and single-epoch returns
R(τ) (scattered, cyan) of one single training run.

(b) Median returns R(τ) of 50 trajectories during
seven independent training runs.

Figure 5.6: Undiscounted returns during RL training with lower policy standard deviation. Allowing
for lower action noise destabilizes the training. For better visibility, only the first 400
epochs are shown in (a). During each epoch, 50 trajectories are evaluated and scattered in
the plot. After approximately 250 epochs, the policy stops colliding at all. Few epochs
later, the policy makes more collisions than before and the returns collapse entirely after
approximately 320 epochs. The phenomenon can be observed in multiple independent
training runs whose median returns are displayed in (b).

Figure 5.5a shows the return of each of the 50 simulated trajectories during each epoch of
one training run, as well as the median return. During early training, most trajectories leave
the track before the end of the simulation. In these cases, the trajectories receive a reward of
Rofftr =−100. As the actions are selected randomly during early training, typically additional
negative rewards are aggregated before leaving the track due to the penalties on the lateral
and longitudinal acceleration. This leads to episodes with returns that are significantly lower
than −100. Within the first 30 epochs, the agent learns to stay on the track in most cases. In
the following epochs, the policy is refined to collect additional rewards through higher speeds
and reduced accelerations.

Exploration Noise Throughout the training, some episodes continue to leave the track.
Leaving the track at later training epochs can be explained by a combination of an adverse
initial state of that vehicle and bad action samples. For the training runs in Figure 5.5, the
effective minimum standard deviation of steering angles selected by the policy is restricted
to be above e−2π/7 ≈ 0.06 rad.6 Allowing for smaller standard deviations (e−4π/7) leads
to the complete prevention of vehicles leaving the track, as Figure 5.6a shows: Only six
vehicles leave the track between training epoch 200 and 270. Then, the training collapses.
The reason is that the policy has learned to approach dangerously close to the road boundary,

6The value can be explained as follows: The policy neural network emits a logarithmic standard deviation,
that is exponentiated to ensure that the standard deviation is positive. The exponent −2 was determined
empirically as a value that produces stable behavior. Finally, the steering angle action is passed through
a tanh function and multiplied by π/7 to ensure that the policy can only select steering angles within
(−π/7,π/7).

112

5.3 EXPERIMENTS: SINGLE-AGENT REINFORCEMENT LEARNING

and eventually crosses it. It can only slowly recover from this behavior, because it only rarely
samples good actions when σ is small, and thus cannot undo its mistake. This phenomenon is
illustrated in example 5.3.

Example 5.3: Effect of low exploration noise

Consider again example 5.1. After many training epochs, the policy standard deviation
σ is tiny. Due to a too large step size α, the mean action has shifted into a region
where a collision cannot be avoided anymore, as shown in the left plot of Figure 5.7.
When not a single good action is sampled, the gradient (5.15) does not lead towards an
improved policy.

3 2 1 0
0

2

4 = 1.7,
 = 0.1

3 2 1 0

= 1.7,
 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
Acceleration in m/s²

0.0

0.5

1.0

Pr
ob

ab
ilit

y
De

ns
ity

Figure 5.7: When the policy standard deviation σ is too low, the policy can get trapped in
areas with low rewards.

One solution to this problem is to simply enforce a minimal policy standard deviation
σmin. Then, as shown in the right plot of Figure 5.7, it can be assured that the policy
continues to sample good actions. This stabilizes the training, but comes at the price
that the policy needs to ensure a certain distance from bad actions.

Most of the training runs in Figure 5.6b eventually collapse due to this phenomenon. To
counteract this issue, this work always enforces a minimum action noise of σmin = e−2 for
both, acceleration and steering.

An alternative interpretation on this can be given through the lens of the policy gradient
estimation mechanism. When the exploration noise is low, the gradient of the returns with
respect to the policy parameters is approximately the analytical gradient, whereas larger
exploration noise means that the gradient is effectively estimated in a larger area around the
policy operating point, similar to the distinction between the extended and unscented Kalman
filter [WV00]. While the analytical gradient is locally more accurate, it can get trapped in
local minima during gradient descent. In contrast, the stochastic gradient is less prone to this,
because the larger effective area of the gradient estimate facilitates escaping local minima.

113

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

Epoch 1
Epoch 10
Epoch 30
Epoch 50
Epoch 100
Epoch 300
Epoch 1000

Figure 5.8: Trajectories from different training epochs.

Training Progress in Trajectory Space Another perspective on the training progress is
given in Figure 5.8, where realizations of policies from different training epochs are shown.
For visualization purposes, all trajectories are initialized at the same position with equal initial
speed, heading and lateral offset. During early training, the policy acts randomly and often
leaves the track. The best trajectories determine how the policy changes. After 30 training
epochs, all trajectories stay on the track. Then, the speed is increased to maximize the reward.
Training has converged after approximately 300 training epochs, and the trajectories after
1000 epochs look similar.

As sampling from action distribution, parameterized by the policy, is a trick to obtain the
gradient estimate required in all presented policy gradient algorithms, sampling from the
policy is disabled when executing the policy for testing. Instead, the mean action µa is
selected. With this, no vehicle leaves the track in 200 random test situations for any final
policy from the 7 training runs. One deterministic realization of the policy from Figure 5.8
is shown in Figure 5.9. The policy has learned to approximately comply with the optimal
acceleration a∗

lat induced by the reward function by adapting its velocity before the curves,
and by maximizing the turn radius through the selected path. On the straight segments, it
drives faster to obtain higher rewards for the velocity. The applied longitudinal accelerations
are below 0.5 m/s2, except from the starting point. Both accelerations are not smooth but
exhibit small jumps. This can be explained by the policy acting purely reactive and without
memory, based exclusively on the current observation. A jump in any of the observation
features can cause a jump in the actions. Thus, the learned policy would probably not be
suited to control a real-world vehicle without any smoothing. However, the kinematic model
integrates the actions and therefore acts as a low-pass, rendering this point uncritical for the
positional prediction.

114

5.3 EXPERIMENTS: SINGLE-AGENT REINFORCEMENT LEARNING

5

6

7

Ve
lo

cit
y

in
 m

/s

(a) Vehicle track and speed: The agent reduces lateral accelerations by braking before curves. Also, by entering
at the outside edge of the turns it effectively increases their radius, thereby further reducing the lateral
acceleration.

0 25 50 75 100
Time in s

5

6

7

Ve
lo

cit
y

in
 m

/s

0 25 50 75 100
Time in s

1

0

1

Ac
ce

le
ra

tio
n

in
 m

/s
²

alon
alat

(b) Speed, lateral and longitudinal accelerations. The lateral acceleration in the turns is close to the ideal
1.5 m/s2 (dark gray).

Figure 5.9: An agent drives one lap through the oval track with the final, deterministic policy. The
vehicle drives clockwise and starts in the upper right corner.

115

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

50 0 50
Predicted Value

50

0

50

Tr
ue

 R
et

ur
n

Figure 5.10: Predicted values V̂ψ(o) and true infinite-horizon discounted return R(τk:∞). The value
network predicts values close to the true return in most cases. This means that it can
anticipate the expected future returns based on the current observation. Hence, the
related GAE provides a good guidance during training on which actions to select to
reach promising states and the corresponding observations.

Value Network and GAE The value network and the GAE significantly influence the
training progress. The value network V̂ψ(o) is trained to predict the future infinite-horizon
GAE-smoothed returns (5.25) after making an observation o. Based on this, the GAE (5.24)
is computed to assess whether an action is beneficial, compared to the estimated value, or
not. To assess whether the value network has learned to correctly predict the expected return
after an observation, Figure 5.10 shows the predicted value and the true return from the initial
observation of 500 simulated trajectories. The trajectories are simulated for 500 time steps to
approximate the infinite-horizon return. The value network V̂ψ accurately predicts the true
return in most cases. The remaining differences are caused by both, the stochastic sampling of
actions during the policy execution, and erroneous value estimates. Adverse initialization with
unsuitable velocities can lead to low returns, as the policy needs to apply large accelerations
to reach an appropriate speed.

For one vehicle driving on the circular track according to the learned policy, Figure 5.11
shows the reward rk of each transition along the trajectory, the value estimate V̂ψ(ok), the
GAE return RGAE(λ,γ)

k , and the generalized advantage estimate ΨGAE(λ,γ)
k . The GAE return

(5.25) is an approximation of the infinite-horizon discounted sum of future rewards. During
training, the value network V̂ψ is trained to predict the GAE return.

The left plot shows a monotonous driving situation. The GAE return is approximately constant,
as the expected infinite-horizon discounted return in the test track only differs marginally,
depending on whether a vehicle is approaching the next curve, or has just left it. The value
network V̂ψ(ok) predicts the GAE return RGAE(λ,γ)

k relatively accurately. The GAE ΨGAE(λ,γ)
k

is the difference between the GAE return and the predicted value, see (5.25). When the
return is higher than the expected value, the GAE is positive, and the corresponding action
is reinforced during training. In the right plot, the vehicle leaves the track at time step 310,
and therefore receives a reward of -100 at that time step. The value network detects the

116

5.3 EXPERIMENTS: SINGLE-AGENT REINFORCEMENT LEARNING

100 125 150 175 200
Time step

0

20

40 Reward
Value
GAE Return
GAE

200 225 250 275 300
Time step

100

50

0

50

Figure 5.11: Rewards rk, value estimate V̂ψ(ok), GAE return RGAE(λ,γ)
k and GAE ΨGAE(λ,γ)

k along
one trajectory. The left figure shows the values during regular driving, whereas the right
figure shows the values before a collision at time step 310. The y-axes are scaled
differently for better visibility. The collision is foreseen by the value network (orange) a
few time steps before it happens, leading to a reduced predicted value. The GAE return
is computed recursively backwards from the point of the collision, and penalizes all
states that lead to the collision. Hence, the policy is discouraged from executing similar
actions in the next training run. Similarly, the value network is trained to predict the
imminent danger earlier, as its training goal is to predict the GAE return.

imminent lane departure a few steps before, as the vehicle is approaching the lane boundary,
and predicts low values. The GAE penalizes all actions from approximately time step 240,
such that the policy learns to avoid the actions that lead to the departure. Depending on the
discount factor γ, the GAE penalizes more or fewer time steps before the departure. This
mechanism is fundamental for the policy to learn the long-term effects of its actions, such
that it learns to avoid actions that lead to low rewards multiple time steps ahead. Similarly,
the policy learns to select actions that increase the obtained rewards in the future.

Implementation Multiple implementations for PPO and GAE exist and are available under
permissive licenses, e.g., [Lia+18; Raf+21]. For the following reasons, the algorithms have
been implemented independently in this thesis nevertheless: First, this enables gaining a better
insight into the internals of the algorithms, for example demonstrated in Figure 5.10 and
5.11. Secondly, this allows for an extendable implementation of the algorithms that not only
supports single-agent RL, but also multi-agent RL as well as the integration of the algorithms
into the IRL framework presented in the next chapter. Still, both implementations [Raf+21]
and [Lia+18] served as a reference during the implementation in this work.

5.3.3 Reducing the Training Time

One important aspect of RL training is the overall time required to obtain a policy. Two main
factors influence the training duration: The number of training epochs and the duration of one

117

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

epoch. The following paragraphs conclude the most important choices made in this thesis to
reduce the training time.

Number of Training Epochs Policy gradient methods iteratively approach the optimal
policy by adapting the parameters according to the current gradient estimate.

A good initial policy reduces the iterations required until the maximum is reached. To this
end, the policy is initialized to select on average an acceleration of 0 m/s2 and a steering
angle of 0 rad.

To minimize the number of iterations, the gradient estimate needs to be accurate. Therefore,
the idea of advantage estimates is used to clearly identify the actions that lead to higher returns
than the current policy. To compare the expected return to the actual return, it is required
to maintain an estimate of the value of the current observation. GAE is used to reduce the
variance of the standard advantage estimate, as described in Section 5.1.2.

Lastly, the step in the direction of the gradient needs to be as large as possible, without leaving
the area where the current gradient estimate is valid. The PPO algorithm achieves this goal by
ensuring that the change in the policy parameters leads to a limited change in the actions that
the policy selects, as discussed in Section 5.1.3.

Duration of One Training Epoch The majority of computational resources while executing
Algorithm 4 is spent while executing the current policy in the simulation to collect the
experience datasetDRL. Training the policy and value networks is comparatively fast, because
of the relatively small size of the networks, c.f. Figure C.1 and Table C.3 in the appendix.

Thus, reducing the duration of one training epoch amounts to reducing the time spent for
collecting experiences during each training epoch. This is achieved by selecting an appropriate
number of simulated trajectories, simulation steps and simulation step size. More simulated
trajectories improve the robustness of the learned policy, and enable a more accurate gradient
estimate. More simulation steps allow the policy to experience the long-term effects of its
actions. For example, an agent learns that applying a longitudinal acceleration is penalized
immediately, but results in a higher return due to the accumulated rewards for the higher speed.
Clearly, increasing the number of simulated trajectories and time steps increases the simulation
duration. Finally, a larger simulation step size also allows the agent to experience the long-
term effects of its actions, but reduces their ability to react to observations by effectively
increasing the reaction time. The values used for training are also listed in Table C.3.

Moreover, to generate experience samples as fast as possible, the simulation environment is
implemented such that multiple simulations are effectively running in parallel, as discussed in

118

5.4 EXPERIMENTS: MULTI-AGENT REINFORCEMENT LEARNING

Section 3.4. Compared to a sequential execution of the simulation, this reduces the required
simulation time by approximately two orders of magnitude.

5.4 Experiments: Multi-Agent Reinforcement Learning

After demonstrating how the combination of PPO and GAE solves a single-agent RL problem,
this section is concerned with transferring the method to a multi-agent problem. To this end, a
POSG is formulated in which each agent in a traffic situation has the goal to maximize its
reward. For the solution, parameter sharing is used to learn one single policy that is applied
by all agents. Training takes place in a roundabout situation with a high degree of interaction
between the agents.

The questions investigated in this experiments section are:

• Which modifications are required to adapt the previously demonstrated single-agent
approach such that a policy that can control multiple vehicles in a roundabout traffic
situation is learned?

• Which modifications to the cost function are required to produce a policy that makes
progress but avoids collisions with other vehicles?

• Which further modifications are required to produce more plausible behavior, i.e.,
respecting right-of-way rules and maintaining safe distances to other vehicles?

5.4.1 Setup of the Partially Observable Stochastic Game

To foster interesting interactions between agents, a roundabout situation is used for training.
For this, the map of the right roundabout in Figure 3.4 is used. The right-of-way situations at
the roundabout entrance require incoming agents to decide whether they enter before or after
inner-roundabout vehicles, and inner-roundabout agents need to adapt their velocity when an
incoming vehicle squeezes in before them. To enable the agents to interact with each other,
other vehicles need to be represented in the observation. Thus, the full observation vector
from Table 3.1 is used.

Handling Collisions Each agent is assigned rewards via the same reward function (5.41)
that was used for single-agent training. In the multi-agent setting, an additional reason for
early termination of the simulation of one agent exists besides leaving the road: A collision
with another agent. In this case, the two colliding agents are removed from the simulation.
The simulation is continued for the remaining agents, which is efficient because they can
continue to gather experience.

This leads to the question of how the collision should be penalized. Often, one agent causes
the collision, whereas the other agent is not to blame, for example, when a vehicle that

119

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

waits at the entrance of the roundabout is hit rear-end by another vehicle. Considering the
core idea of policy gradient RL—iteratively increasing the likelihood of selecting actions
with high rewards compared to those with low rewards—penalizing the stationary vehicle in
this situation would be harmful, as it introduces noise into its rewards: Usually, stopping at
the roundabout is a reasonable action that yields average rewards, but when a rear vehicle
strikes the stationary vehicle, the same sequence of observations and actions would lead to a
penalty. This creates contradicting training signals and therefore potentially destabilizes the
RL training.

For this reason, only agents that could have avoided a collision by acting differently are
penalized. Agents that are not at fault in a collision receive no penalty, and their return and
advantage estimate are computed as if their simulation continues indefinitely, as described
in Section 5.1.2. These early terminations are treated equally to other non-culpable early
terminations, such as when the simulation horizon is reached.

In concrete terms, this requires an implementation of simplified traffic rules in the simulation
to determine whether an agent is culpable in a collision. The rules are simple: In a rear-end
collision, only the rear agent is culpable. In a right-of-way collision within 5 m after one
vehicle entering the roundabout, both agents are culpable.7 Despite the formal precedence of
one agent over the other, both should act to avoid a collision.

The penalty assigned in case of a culpable collision

Rcoll(v) =−20−ωcoll,vel|v|/[m/s] (5.44)

is dependent on the speed of the agent. Compared to a constant penalty, this leads to an agent
preferring collisions at lower speeds to collisions at higher speeds, and thereby provides a
direction of change for the policy to ultimately avoid the collision entirely. If only constant
penalty was used, the agent would only learn to brake before a collision once it experiences
that it can avoid a collision by braking, after selecting a sequence of sufficiently large braking
actions by chance. Thus, this pseudo gradient on the collision penalty speeds up the training.

How large should the weight ωcoll,vel of the speed-dependent collision penalty be? Even if
a collision cannot be avoided, emergency braking should be beneficial to collide with the
lowest possible speed. Emergency braking with −7 m/s2 is penalized via the longitudinal
acceleration penalty in (5.41) with ωacc,lona

2
lon/[m/s2] =−2.36 per step, where the weight is

ωacc,lon = 1/(9 ln(10)). The step size is ∆t= 0.2s. The decrease in speed during this time is
∆v = ∆t alon =−1.4m/s. To ensure that braking is always beneficial, the penalty ωacc,lona

2
lon

due to the braking must be overcompensated by the reduced penalty for a collision with

7Initially, only the agent that violated the right-of-way was penalized. However, this lead to inner-roundabout
agents completely ignoring incoming vehicles, even when slightly braking would resolve the situation. To
keep things simple, introducing different penalties depending on the degree of culpability, similar to traffic
law, is not explored here.

120

5.4 EXPERIMENTS: MULTI-AGENT REINFORCEMENT LEARNING

reduced speed. It follows, that ωcoll,vel must be larger than −2.36/∆v ≈ 1.7/[m/s]. Then,
the reduction in reward by braking is immediately compensated by the decreased collision
penalty. For simplicity, it is set to ωcoll,vel = 2/[m/s].

Situation Initialization To train a robust policy, it must be ensured that agents are con-
fronted with a large variety of situations during training. During each training epoch, 50
situations are simulated. The situations are initialized randomly at each epoch. To capture
different traffic densities, situations are initialized with a random number of 1 to 17 agents.
The exit that each agent needs to take is also selected randomly. Equal to the single-agent
case, the initial heading and lateral offset from the lane center is drawn randomly. Agents are
placed on fixed positions along the four lanes leading to the roundabout every 16 m, plus a
random offset within U(0,7)m. The resulting minimum initial bumper-to-bumper distance is
approximately 4 m. In 70% of all situations, each vehicle is assigned a speed from the uniform
distribution U(0,20)m/s. As a result, vehicles are occasionally initialized in situations with
low distances and large delta velocities to their preceding vehicle, which enables them to
learn how to act in these critical situations. To train the agents to resolve situations where
everyone is in standstill, all vehicles start with an initial speed of 0 m/s in 15% of all situations
and with U(0,3)m/s in the remaining 15%. Some exemplary initial situations are shown in
Figure C.2.

5.4.2 Learning to Drive

Most of the settings for training correspond to the single-agent experiment described in
Section 5.3.2. The policy and value networks have a larger number of inputs, because
more observation features are used. Except from this, their architecture remains unchanged
and is shown in the appendix in Figure C.1. In contrast to single-agent learning, more
experience from an average number of 500 agents is aggregated during each training epoch.
The approximate tenfold increase in simulated trajectories compared to single-agent learning
leads to an increased training time of 3 to 4 h for 1000 epochs. The training is repeated seven
times to ensure reproducibility. All training parameters are listed in Table C.4.

The training progress is visualized in Figure 5.12. The performance between epochs fluctuates
more strongly than in the single-agent case due to the non-stationarity of the multi-agent
problem. Still, the training reproducibly reaches high returns after approximately 400 epochs.
Remarkably, all training runs learn approximately at the same speed during early training.
Compared to the single-agent training shown in Figure 5.5b, this can be explained by the
much larger number of experiences aggregated per epoch, which makes the estimation of the
gradient direction more robust.

121

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

(a) Median R(τ) and single-epoch returns R(τ)
(scattered, cyan) of one single training run.

(b) Median returns R(τ) during seven independent
training runs.

Figure 5.12: Undiscounted returns during MARL training. During each epoch, the returns of
approximately 500 trajectories are evaluated and scattered in (a). To investigate the
reproducibility, the median returns of seven independent training runs are shown in (b).

Collisions occur throughout the training. At later training stages, these collisions occur mostly
due to adverse initializations, e.g., when one vehicle is initialized with little distance to its
preceding vehicle at a much higher speed and cannot avoid the collision anymore. Decreasing
the maximum initial speed during the simulation avoids almost all collisions. However, this
should not be implemented at training time, as the robustness of the models crucially depends
on agents experiencing collisions to learn to avoid them. As the reward function is unchanged
except for collisions, the return values can be directly compared to those in the single-agent
case depicted in Figure 5.5. The median return is significantly lower in the multi-agent
case, because agents need to drive slower or wait at the roundabout entry to avoid collisions.
Executed in the test and unseen situation from Section 4.3, the learned policy shows lower
failure rates than the best multi-step policies. The collision rate is between 0.5 and 1.2% in
both situations. No vehicle leaves the track in both situations. A more thorough comparison
of multi-step and RL-based policies follows in the next chapters.

Demonstration of the Learned Policy A demonstration of the learned policy is provided
in Figure 5.13. The images show a top view of the simulated traffic situation in chronological
order. The simulation time is shown in the top right corner. The agents have learned to stay
on the track, and accelerate and steer to follow their intended route. Moreover, they brake to
avoid rear-end collisions. Close to the four roundabout entries, both, the inner-roundabout
and the entering vehicle slow down to resolve the merge situation. Interestingly, as visible for
vehicles #5, #10, and #6, the agents have learned to negotiate the right of way differently than
in real traffic: Here, the inner-roundabout vehicle brakes to let an oncoming vehicle enter.
From a macroscopic perspective, this leads to a congestion at the roundabout.

Considering the reward function, this observation is not surprising: Each agent is rewarded
for its own progress along the track. Cooperation emerges exclusively from the self-interest of
not colliding. If the agents are to handle right of way as they do in the real world, they must be

122

5.4 EXPERIMENTS: MULTI-AGENT REINFORCEMENT LEARNING

Figure 5.13: Execution of the multi-agent reinforcement learning policy by all agents. While the
agents have learned to follow their route and avoid collisions, they have learned an
inverted right-of-way logic, where incoming vehicles have priority over
inner-roundabout vehicles.

rewarded for doing so. In addition to the reversed right of way, the agents only maintain little
distances to other vehicles. A more realistic modeling should reflect that drivers typically do
not fall below certain time gaps.

Improved Traffic Modeling For a more accurate model of traffic situations, three additional
reward terms are introduced: 1.) If the time gap to the preceding vehicle falls under a
threshold, an agent is penalized. 2.) If the absolute distance to the preceding vehicle falls
under a threshold, an agent is penalized. 3.) Agents are rewarded for respecting right of way
rules. Vehicles about to enter the roundabout receive a penalty when the distance or time gap
of the closest vehicle with right of way to them is below a threshold.

Specifically, this leads to the reward function

R(v,alon,alat) = ωvel ln(v/[m/s]+ ϵ)−ωacc(alon/[m/s2])2−ωacc(alat/[m/s2])2

+Rofftr +Rcoll(v)+Rtg +Rdist +Rrow (5.45)

with the newly introduced penalty for the timegap ∆t

Rtg =−10 if ∆t <∆tmin, (5.46)

123

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

Figure 5.14: Execution of the cooperative MARL policy by all agents. With the cooperative reward
function, the agents learn the correct right-of-way rules, compared to Figure 5.13.

the penalty for the distance to the preceding vehicle dpre

Rdist =−10 if dpre < dmin, (5.47)

and the right-of-way penalty,

Rrow =−10 if dccv,ego < dccv,ego,min or ∆tccv,ego <∆tccv,ego,min, (5.48)

which is assigned when the distance of the closest conflicting vehicle dccv,ego to the agent is
too low or when the time gap of the closest conflicting vehicle to the agent ∆tccv,ego is too
low.

This cooperative reward function replaces the previously used reward function. Starting from
the same initial situation as in Figure 5.13, the evolution of a traffic situation simulated with
the cooperative policy is depicted in Figure 5.14. Now, the agents respect the right of way and
only enter the roundabout if a sufficiently large gap exists, as for example visible for vehicle
#5 and #8. Moreover, agents keep larger distances and time gaps to each other.

5.5 Modeling Individual Driver Traits

The result of all previous experiments in this chapter is one single policy that maximizes the
reward function. When a situation is simulated, the same policy is executed by all drivers. The
resulting behavior is homogeneous: Faced with the same observation, every agent behaves
the same. However, real drivers exhibit a variety of behaviors, because they have differing

124

5.5 MODELING INDIVIDUAL DRIVER TRAITS

preferences. Some drivers prefer to keep more distance to the vehicle in front than others.
Aggressive drivers might prefer higher accelerations and velocities than careful drivers.

This leads to the last question investigated in this chapter:

• How can multi-agent RL be extended to model heterogeneous driving behavior?

To this end, the following section proposes an approach of learning a heterogeneous driving
policy that can adapt its behavior to differing preferences.

One way to obtaining different behaviors is to use Independent Proximal Policy Optimization
(IPPO) without parameter sharing. Thereby, multiple policies that maximize different reward
functions are trained by letting the agents with different policies interact in the simulated
traffic situation. However, this reduces the amount of experiences available for training per
policy, compared to training one single policy using parameter sharing. If N different policies
are trained by letting every agent execute one of the policies, only 1/N of the total simulated
experiences are generated by each policy and can be used for its improvement. Moreover,
this approach is susceptible to instabilities, because each agent influences the perceived
environment dynamics of the other agents, and bad policies can thereby impair the learning
of the other agents.8

Instead, this thesis proposes to learn one single flexible policy, which exerts different behaviors
depending on its inputs. Three preferences ρ = (∆tmin,i,dmin,i,ωacc,i) are assigned to each
agent. These define the individual thresholds for the minimum timegap in (5.46) and minimum
distance in (5.47), and the individual weight of the acceleration cost in (5.45). Depending
on their values, the reward function changes, and with it the optimal behavior. To inform
the policy about the preferences, these are used as additional input variables besides the
observation features of the traffic situation from Table 3.1. This enables the policy to learn
the relation between the preference variables and desirable behavior, e.g., to avoid time gaps
below the individual threshold ∆tmin,i.

During training, each agent is assigned a random preference vector with ∆tmin,i ∼ U(0.5,2)s,
dmin,i ∼ U(1,6)m, and the optimum lateral acceleration a∗

lat,i ∼ U(1.5,4)m/s2, which is
converted to the weight of the acceleration ωacc,i according to relation (5.40). The preferences
of each agent remain constant throughout one simulated traffic situation and are reshuffled
before the next simulation in the next training epoch. In this way, a flexible policy is learned
on the basis of the experiences of all agents.

8In multi-agent settings, agents are often competing for the same resources, and the policy which figures out
the fastest has a strong and continuous advantage over the other policies. If for example one policy learns
to ignore the right of way by entering the roundabout and forcing inner-roundabout vehicles to brake, the
inner-roundabout vehicles cannot learn to insist on their right of way, as they would collide otherwise. This
is a Nash-equilibrium, from which it is hard to escape, as no agent can improve its return by changing its
policy when the other agent sticks to its policy.

125

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

(a) Initial situation (b) Careful parameters (c) Aggressive parameters

Figure 5.15: Effect of simulating the same initial situation with aggressive and careful driving
parameters for every agent: After 15 s of simulation, the distance between the vehicles
waiting at the entry lanes is clearly distinguishable. Vehicles have made more progress in
the aggressive case, as they tolerate higher velocities and smaller time gaps.

After training, the behavior of the policy can be adapted at runtime via the preference input
of the policy. To demonstrate the effect, the evolution of 50 initial traffic situations is
simulated twice. The first set of simulations is performed with aggressive driving preferences
(∆tmin = 0.5s,dmin = 1m,a∗

lat = 4m/s2) for each agent, the second set of simulations is
performed with careful driving preferences (∆tmin = 2s,dmin = 6m,a∗

lat = 1.5m/s2) for each
agent.

Figure 5.15a shows one initial traffic situation in which every agent has the goal of leaving
the roundabout at the exit where they entered. Figure 5.15b shows how the situation evolves
when every agent executes the policy with the careful preferences. Figure 5.15c shows the
situation when every agent behaves aggressively. Clearly, the policy has learned to adapt its
standstill distance to the preference value.

A histogram of the time gaps that emerge during the simulation of the 50 traffic situations is
depicted in Figure 5.16. The agents have learned to drive with time gaps above their minimum
time gap. The preference value has a clear impact on their behavior. The learned policy
maintains a relatively large safety margin towards the threshold. This can be explained by
the large penalty of -10 that is assigned when the time gap falls under the threshold. Using
a smaller penalty during training leads to policies that tolerate undercutting the threshold
briefly, e.g., to merge into the roundabout directly behind another vehicle.

126

5.5 MODELING INDIVIDUAL DRIVER TRAITS

Figure 5.16: Time gaps during simulation with careful and aggressive driving parameters

(a) Lateral acceleration of one agent driving one
lap through a lonely roundabout

(b) Histogram of lateral accelerations of all
simulated agents

Figure 5.17: Lateral acceleration

Finally, the effect of the lateral acceleration penalty on the behavior is analyzed. A situation
is considered where one lonely vehicle drives a full circle through the roundabout. The lateral
accelerations that the agent experiences during this simulation is plotted in Figure 5.17a. For
the aggressive agent, the weight of the lateral acceleration penalty ωacc,lat is set such that
the tradeoff between velocity reward and lateral acceleration penalty is optimal at a lateral
acceleration of 4 m/s2 according to (5.40). The weight for the careful agent is set such that
its optimal acceleration is 1.5 m/s2.

During the simulation, the aggressive agent drives with an average speed of 7.6 m/s inside the
roundabout, leading to a lateral acceleration slightly below the optimal 4 m/s2. The careful
agent drives approximately 4.3 m/s, leading to a lateral acceleration of 1.3 m/s2, also slightly
below its optimum. Due to the higher speed, the aggressive agent completes its lap through
the roundabout significantly faster than the careful agent.

Figure 5.17b shows a histogram of the lateral accelerations that all agents experience during
the simulation of the 50 traffic situations. The situations are initialized with varying traffic

127

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

densities, as shown in Figure C.2. The effect of the aggressive or careful parameterization
is clearly visible. In the traffic situations with low traffic density, the agents drive such that
their lateral acceleration approaches the optimal value. At higher traffic densities, the lateral
acceleration is typically below the optimal value, because the vehicles cannot select their
speed freely due to the presence of other vehicles. The lateral accelerations rarely exceed the
optimal value of 4 m/s2 or 1.5 m/s2.

These three experiments show that the proposed method enables learning a flexible driving
policy that can exert different behaviors at execution time. The policy can be used for
modeling different types of drivers. The implementation of additional preference variables is
conceivable, but omitted here for brevity.

To model uncertainty about the evolution of a traffic situation, multiple predictions of the same
initial situation can be made with random preference parameters for each agent. Moreover,
using a Bayesian filter such as an unscented Kalman filter or a particle filter, the preference
vector of an observed vehicle could be estimated online by comparing predictions under
different preferences to the actual behavior of a driver. This could be used to obtain a driver-
specific prediction model. For example, a driver that has been observed to drive carefully
could be predicted to continue driving carefully in the future. Similar ideas have been explored
in [HSD17; Bey+21a], where the parameters of the car-following IDM [THH00] are estimated.
Sadigh et al. [Sad+18] goes one step further and proposes to actively gather information on
another driver by selecting actions oneself that clarify the preferences of the other driver. For
example, the authors present a driving strategy where an automated vehicle first nudges into
the lane of another vehicle to probe its attentiveness, and only merges when the other vehicle
reacts. Compared to the simplistic driver models used in [HSD17; Sad+18; Bey+21a], this
chapter proposes a method to learn policies that handle longitudinal and lateral control while
interacting with multiple relevant surrounding vehicles simultaneously.

5.6 Conclusion

RL is a group of methods with the goal of finding policies that maximize the aggregated
reward of an agent that interacts with an environment. This chapter described the idea
of policy gradient RL, which forms the basis of algorithms that learn policies in partially
observable environments with continuous observation and action spaces. Based on this, two
improvements from the literature are described: GAE reduces the variance of the gradient
estimate and PPO determines the maximum step that can safely be used during the gradient
ascent procedure.

The key contribution in this chapter lies in the application of GAE and PPO, which are typically
used in robotics control tasks, to the problem of driver behavior modelling. To model traffic
situations, a multi-agent variant of PPO is implemented from scratch. The implementation

128

5.6 CONCLUSION

enables the training of a cooperative policy that controls all vehicles. Moreover, a method to
model heterogeneous driving behavior is proposed, whereby a single flexible policy is learned
that can change its behavior, depending on special preference inputs. The implementation
also forms the base for further extensions of the algorithms that are presented in the next
chapter.

Besides demonstrating the application of the algorithms to driver behavior modeling, the
following describes insights into the algorithms that are important for successful, stable and
fast training.

Single-Agent Reinforcement Learning The combination of PPO and GAE is applied to
the problem of learning a single-agent driving policy. To this end, all ingredients to the
RL problem are described: The simulation environment and the observation vector remain
unchanged, compared to the previous BC chapter. A new reward function is derived from
the assumption that a comfortable lateral acceleration exists as a tradeoff between the reward
for progress along the track and the penalty for the lateral acceleration. Hence, the optimal
behavior under this reward function would be to adapt one’s velocity to the curvature of the
road, such that this comfortable lateral acceleration is maintained.

The experiments visualize how the policy iteratively learns to stay on the track and to increase
its rewards. The central mechanism behind this is

• the random selection of actions,
• evaluation of the rewards of the resulting trajectory sequences,
• computation of the GAE, i.e., which actions lead to higher long-term rewards than

expected, and finally
• increasing the probability of selecting actions with positive GAE values and decreasing

the probability of selecting actions with negative GAE.

It is shown that by repeatedly executing this procedure, the policy learns to adapt its velocity
in curves such that the lateral acceleration is close to the theoretical optimum.

Thereby, an insight into the importance of exploration noise is gained: If the variance
of the probability distribution according to which the actions are selected is too low, the
policy eventually stops to experience bad behavior such as leaving the track during training.
Shortly after, its performance collapses. Similar to BC, the lesson to be learned here is that
it is important to make good and bad experiences during training—good experiences are
important to further improve the performance, and bad experiences such as leaving the track
are important to ensure the robustness of the policy.

Alternatively, using smaller magnitudes of the exploration noise can be interpreted as making
a more local estimation of the policy gradient. In contrast, larger noise leads to a more global

129

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

gradient estimate. This is similar to the difference between the extended and the unscented
Kalman filter. The more global gradient estimate is better equipped to handle regions of sharp
change in the reward, such as when a vehicle is either penalized heavily for crossing the road
boundary or moderately rewarded for staying within it.

The training progress is visualized in the trajectory space. Moreover, the mechanism of GAE
is demonstrated: For regular driving of the trained policy, the GAE value fluctuates around 0,
meaning that the policy will only be adapted marginally for the corresponding observations.
In case of a collision, the GAE becomes strongly negative multiple steps before the incident,
meaning that the policy avoids select all actions that lead to the crash after the next training
epoch.

Multi-Agent Reinforcement Learning The second part of the chapter is concerned with
MARL. Teaching one vehicle to drive and interact with other vehicles introduces a chicken-
and-egg problem: To learn a policy that properly interacts with other vehicles, the other
vehicles need to follow a policy that properly interacts with oneself. To resolve this dilemma,
the idea of parameter sharing is picked up: All vehicles learn simultaneously in the same
simulation, and each vehicle is controlled by a copy of the same policy. The policy, in turn, is
trained based on the experiences collected by all agents in this simulation. It is demonstrated
that parameter sharing enables the application of the single-agent algorithm to the multi-agent
problem. Hence, the intuition gained from single-agent RL can be directly transferred to
MARL.

Nevertheless, the multi-agent problem is theoretically more demanding, as it entails non-
stationary environment dynamics during training: From the perspective of one agent, the
environment dynamics change between training epochs, because the changing policy controls
all surrounding agents. To ensure stable training, one key takeaway is that the policy should
change in small steps during training, such that the environment dynamics can be considered
quasi-stationary. The PPO algorithm has been selected because it explicitly limits the amount
that the policy changes between training epochs via the parameter ϵ. Moreover, a small
learning rate during the optimization of the policy and value neural networks reduces the
change of the policy between training epochs.

The reward function is adapted to penalize vehicles that are involved in a collision. Another
important insight is to distinguish between vehicle trajectory terminations due to own fault or
due to external circumstances. For example, a vehicle that crosses the lateral road boundary
or collides with another vehicle terminates at own fault, but a vehicle that is hit in a rear-end
collision is not at fault. For vehicles that are not at fault, the return is computed as if the
trajectory was continued indefinitely, whereas vehicles that are at fault receive a final penalty
and no further rewards after their termination.

130

5.6 CONCLUSION

With this, a policy is trained for controlling multiple vehicles in roundabout situations. The
experiments show that it is essential for the reward function to not only reward the progress
of each agent, but also the compliance with right-of-way rules. Otherwise, the training result
is sometimes a policy with an inverted right-of-way logic, where vehicles that enter the
roundabout have priority over vehicles that are inside the roundabout. Under this policy,
traffic jams form at high simulated traffic densities.

After adapting the reward function to adhere to right-of-way rules and to maintain safety
distances to other vehicles, a safe policy is learned that stays on the track, avoids rear-end
collisions, and handles right-of-way situations correctly.

Modelling Heterogeneous Behavior Finally, the question of how to model heterogeneous
driving behavior is addressed. To this end, a method to learn a flexible driving policy that
can represent different driving styles is proposed. This is achieved by introducing preference
parameters that change the reward function for individual agents. By making these parameters
also part of the observation vector that is fed into the policy, the agents can observe their
preferences and learn to adapt their behavior. This is demonstrated for the example of
preferences for the minimum time gap, the minimum distance to a preceding vehicle, and the
penalty for the lateral acceleration: The simulated vehicles rarely fall below the individual
safety distance, and adapt their velocity in curves to experience their individual comfortable
acceleration.

Comparison to Multi-Step Training There are two central differences between policy
gradient RL and multi-step training from Section 4.2. First, multi-step training directly tries
to find a policy that produces trajectories similar to a dataset of ground truth trajectories,
whereas RL generally aims to maximize a manually defined reward function. While direct
imitation is a straightforward way to learning a policy for predicting driver behavior, it is
inherently limited because it can only be trained in situations for which a set of real world
trajectories has been recorded. This is the central motivation of this thesis to investigate IRL
approaches in the next chapter, which build upon the ideas and implementation presented in
this chapter.

Secondly, multi-step training computes the gradient with respect to the policy parameters
analytically, whereas policy gradient RL methods approximate the gradient stochastically.
This stochastic approximation has the advantage that it does not require a differentiable
simulation environment. Moreover, while the analytic gradient computation is clearly more
accurate, it becomes numerically instable for large simulation horizons, approximately larger
than 10 s in Section 4.3.2, and requires pre-training the policy with shorter horizons for
stabilizing the training. In the context of deep learning, the numerical instability can manifest
as vanishing or exploding gradients [Zha+22, Ch. 5.4 and 9.7]. In contrast, the stochastic

131

5 LEARNING FROM REWARDS: REINFORCEMENT LEARNING

gradient approximation used in the experiments from this chapter is not prone to instabilities
and can be used for arbitrary long simulation horizons.

132

6 Reconstructing the Rewards: Inverse
Reinforcement Learning

Parts of this chapter have been published in [Sac+22b].

Learning a policy from rewards using RL, as described in the previous chapter, has one
major drawback: A reward function is required. As the goal of this thesis is to find a policy
that accurately models human behavior, the reward function needs to accurately describe
the incentive structure of real-world drivers. This reward function is generally unknown.
Therefore, this chapter is about methods to establish a reward function that explains the
behavior of human drivers. This is desirable, as the reward function is a compact representation
of the goals of the drivers and can be used to infer a driving policy even for situations where
no training data is available. In the behavior triangle in Figure 1.2, this chapter closes the last
link: deriving the reward function from a dataset of observed trajectories.

One approach to finding an appropriate reward function has been practically applied in
Section 5.4.2: Making an initial guess of the reward function, training the policy with it,
observing the resulting outcome, and then adapting the reward function by adapting the terms
and varying their weights. Guessing the reward function involves many degrees of freedom,
for example: Should the acceleration be penalized quadratically, or linearly? Is the weight of
longitudinal acceleration equal to that of lateral acceleration? How should progress along the
track be rewarded? And how should a violation of the minimum distance be penalized?

Before observing the effect of a new reward function on the resulting behavior, the policy
needs to be trained again. This makes the procedure tedious, as many iterations are required
until a policy that produces realistic behavior is found.

This procedure is automatized by Inverse Reinforcement Learning (IRL) [NR00]: Given
expert demonstrations (trajectories) of the behavior of an agent and a simulation model of the
environment, the goal is to determine the reward function that the agent optimizes. Classical
IRL methods such as [NR00; AN04; Zie+08] aim to reconstruct the weights ωi of a linear
combination of known reward-features, i.e., R(y) = ω1R1(y) +ω2R2(y) + One key
insight used by [AN04] is that if the policy and expert trajectories are similar, the values of
the reward terms must also be similar.

The learning procedure in [AN04] works as follows: A reward function is formulated, then a
policy is learned using standard RL to maximize it. Next, the reward of trajectories coming
from the policy is compared to the rewards of the expert demonstrations. A new set of reward

133

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

weights is constructed, such that the expert trajectories receive high rewards whereas the
policy trajectories receive low rewards under this weight vector. Then, a new policy is learned
and the cycle continues. When a new policy is learned, the obtained rewards are maximized,
whereas they are minimized when a new set of reward weights is established. As the difference
between the policy rewards and the expert rewards shrinks after each iteration, the learned
policy increasingly resembles the expert policy and can match its rewards arbitrarily close
under ideal conditions [AN04].

This method has three fundamental disadvantages: First, it requires the reward function to
be linear and the components of the reward function to be known. Secondly, it requires a
full RL training for each reward function guess, making the procedure very time-consuming
[HE16; FLA16]. And thirdly, the resulting policy becomes ambiguous when the expert
demonstrations are sub-optimal [Zie+08].

Therefore, the next section explores the theory behind Generative Adversarial Imitation
Learning (GAIL) [HE16] and Adversarial Inverse Reinforcement Learning (AIRL) [FLL18],
two recent approaches to IRL which address these issues. Both approaches realize the reward
function as a neural network instead of a linear combination of reward terms, allowing for
a more expressive representation. Moreover, GAIL and AIRL reduce the training time by
intertwining the optimization of the policy and the reward neural network. Unlike conventional
IRL methods, where these functions are optimized sequentially, this leads to a significantly
shorter training time. The algorithms target a single-agent setting; Section 6.2 describes
modifications to apply them to the multi-agent problem of traffic situation prediction, along
with approaches to stabilize the training.

An overview on related works which use IRL in the context of trajectory prediction is given
in Section 6.3. In contrast to the related works, the central novelty in this chapter is the
application of AIRL to the problem of trajectory prediction. Compared to GAIL, the reward
function reconstructed by AIRL can be used for RL training in additional situations that are
different from the original training situations. This is exploited by confronting the AIRL policy
with artificial critical situations on a new map to increase its robustness and versatility. Finally,
different variants of GAIL and AIRL policies are trained and evaluated in Section 6.4.

6.1 Adversarial Learning

Finn et al. [Fin+16] remark that the back and forth between maximizing the rewards via RL and
adapting the reward function to distinguish between expert trajectories and policy-generated
trajectories can be interpreted as a minimax game between reward function and policy, similar
to a Generative Adversarial Network (GAN) [Goo+14]. Based on this idea, Ho et al. [HE16]
propose GAIL, which transfers the ideas from GAN to IRL: The policy continues to be
learned by RL, but the reward function is replaced by a discriminator, which has the task of

134

6.1 ADVERSARIAL LEARNING

Generator, execute MARL-policy

Environment Agent 1

Agent 2

...

Real-world
trajectories

1.
In

iti
al

iz
e

Discriminator

...

Synthetic
trajectories

2. Aggregate
experiences

4. RL training:
Use discriminator result as reward

Input:
observations

3. Training goal:
min. classifi-
cation loss

Exchange of observations,
actions, and rewards

Figure 6.1: Visualization of GAIL:
1. The simulation environment is initialized from real-world traffic situations.
2. The generator, i.e., the combination of simulation environment and agent policies, is
executed to build up a dataset of simulated trajectories.
3. The discriminator is trained to distinguish between real and simulated trajectories.
4. During RL training, the reward signal for improving the policy is derived from the
probability of the RL trajectories originating from real data, which is estimated by the
discriminator.
These steps are repeated until the trajectories generated by the learned policy closely
resemble the real trajectories.

distinguishing between expert and policy trajectories. Compared to classical IRL approaches,
GAIL bears the advantage that the discriminator is a neural network, which removes the need
to manually engineer reward terms. Moreover, the training of the discriminator happens inside
the RL training, such that the overall training time is dramatically reduced.

Fundamentally, GAIL consists of two components depicted in Figure 6.1: A generator, which
is the combination of a policy and the simulation environment. It is called generator, because
it generates trajectories, consisting of a sequence of observations and actions. The second
component is the discriminator, which is tasked with deciding whether its input originates
from the generator or from an expert demonstration. Often, the input to the discriminator is
an observation, equal to the policy input.

The underlying assumption is that the expert demonstrations are a result of the execution of
an unknown expert policy. To find a policy that resembles this expert policy, the discriminator

135

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

neural network is trained to distinguish between inputs from expert trajectories and inputs
from synthetic trajectories by the generator. Next, one epoch of a standard RL algorithm is
executed to improve the policy in the generator. The trick is that the discriminator acts as
the reward function—the RL agent is rewarded, when the discriminator considers it to be an
expert demonstration, and it is penalized when the discriminator detects that it is synthetic.

6.1.1 Theoretical Background: Generative Adversarial Imitation
Learning

Concretely, the discriminator neural network Dϕ :B→ [0,1] with parameters ϕ maps from
its input b ∈B to the probability that the input stems from the expert. While the input features
to the discriminator are often the observation vector (B = O), this work experiments with
different inputs and therefore uses the separate symbol B for the discriminator input features.
Based on a set of discriminator input features extracted from expert trajectories DE and from
trajectories generated by the most recent policy execution, stored in the synthetic dataset DS ,
the discriminator is trained to minimize the binary cross entropy classification loss

ℓ(DE ,DS) =− 1
|DE |

∑
b∈DE

ln(Dϕ(b))− 1
|DS |

∑
b∈DS

ln(1−Dϕ(b)). (6.1)

Besides the use in GAIL [HE16], the cross entropy is commonly used in classification tasks
[Zha+22, Chapter 22.11] and originates from information theory [CT06]. It measures how
well the predicted probabilities align with the actual probabilities. The binary cross entropy
becomes minimal when the predicted distribution is equal to the true distribution. Here, this
is the case when every item from the expert dataset DE is assigned a probability of 1, and
every item from the synthetic dataset DS is assigned a probability of 0.

Next, the policy is trained with the reward function [HE16]

R1(b) = ln(Dϕ(b)), (6.2)

which assigns a reward of 0 when the discriminator considers its input to stem from the expert.
A negative reward up to −∞ is assigned, when the discriminator estimates a low probability
of the data stemming from the expert.1

An improved reward function

R2(b) = ln(Dϕ(b))− ln(1−Dϕ(b))+ c (6.3)

is proposed by [Fin+16; FLL18] with c= 0 for now. Both functions are depicted in Figure 6.2.
Compared to the original reward functionR1, it additionally assigns high positive rewards

1For numerical stability, the discriminator outputs are clipped to (e−5,1−e−5)≈ (0.007,0.993) in this work.

136

6.1 ADVERSARIAL LEARNING

0.00 0.25 0.50 0.75 1.00

Discriminator probability D(b)

−4

−2

0

2

4

R
ew

ar
d

R1(b) = ln(D(b))

R2(b) = ln(D(b))− ln(1−D(b))

Figure 6.2: Reward functionsR1 andR2: The rewards depend on the probability Dϕ(b) estimated by
the discriminator. If the discriminator assigns a low probability of b stemming from the
expert, both rewards can assume values of up to −∞; the corresponding states are
therefore to be avoided by the policy. On the other hand, onlyR2 assigns high positive
rewards if the policy successfully outwits the discriminator, such that the discriminator
estimates a high probability of b stemming from the expert. Hence, the policy is strongly
incentivized to reach these states.

when the policy manages to outwit the discriminator and receiving a high probability of
stemming from the expert via ln(1−Dϕ(b)). Empirically, this reward function leads to a
faster convergence of the learning algorithm.

With this, Algorithm 5 can be defined. Compared to the original GAIL algorithm presented in
[HE16], two modifications are made: 1.) The improved reward functionR2 is used. 2.) The
original GAIL paper uses Trust Region Policy Optimization (TRPO) [Sch+15b] as the policy
gradient algorithm in step 5, whereas the implementation in this work uses the successor PPO
with GAE, as described in Section 5.1.3.

Algorithm 5 Generative Adversarial Imitation Learning, modified from [HE16]

1: Initialize neural nets for policy πθ0 , value estimate V̂ψ, and discriminator Dϕ randomly.
2: for epoch i= 0..N do
3: Collect trajectory dataset DS by executing the current policy πθi

in the environment,
as in standard RL.

4: Train discriminator by making a gradient descent step in the direction of
∇ϕℓ(DE ,DS).

5: Continue standard RL algorithm with rewards assigned by R2(b). Here, the com-
bination of PPO and GAE described in Algorithm 4 on page 104, steps 4 to 6 is used:
Compute GAE and return, train value estimate, improve policy using policy gradient
estimate.

6: end for

137

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

End of Training Training GAIL can be interpreted as a two-player minimax game2

min
ϕ

max
θ
−Eτ∼DE

{
ln(Dϕ(bk))

}
−Eτ∼πθ

{
ln(1−Dϕ(bk))

}
. (6.4)

between generator and discriminator [Goo+14]: The generator tries to maximize the rewards
obtained by the discriminator, while the discriminator tries to minimize the rewards assigned
to the generator. The targeted stable point of this game is a Nash equilibrium, where none
of both can improve any further by changing its outputs. At this point, the learned policy is
equal to the expert policy. The discriminator can no longer distinguish between the expert
and the learned policy and must therefore output a probability of 1/2 for any input.

6.1.2 Adversarial Inverse Reinforcement Learning

In theory, upon reaching the Nash equilibrium in GAIL, the discriminator becomes useless,
as it always outputs 1/2 irrespective of its input. Thus, GAIL learns to imitate the expert
policy, but does not recover the reward function of the expert. However, recovering the
reward function is desirable, because it is a more distilled form of describing behavior: While
the reward functions in Chapter 5 consist only of few interpretable terms, the policies that
maximize the reward functions are significantly more complex, as they need to determine the
behavior for every conceivable situation. Applying the learned policy in situations different
from the training situation may not succeed due to distributional shift. This is also the reason
why behavior planning in automated vehicles is typically formulated as an optimization
problem of a reward or cost function as opposed to directly programming the behavior for all
situations.

Modifying GAIL to also recover the reward function is the motivation behind AIRL [FLL18].
AIRL maintains the same structure of GAIL, but imposes a special structure on the discrimi-
nator. Apart from using the modified discriminator, all steps in Algorithm 5 are identical and
the structure in Figure 6.1 remains unchanged.

Fu et al. [FLL18] show that the AIRL discriminator, which classifies based on observations o
and actions a, can be formulated as

D(o,a) = pE(a|o)
pE(a|o)+π(a|o) . (6.5)

with the unknown expert policy pE(a|o). The idea is that given an observation o, the decision
whether one observes expert or simulated behavior can be made based on the probability that
an expert would select this action pE(a|o) and the probability that the policy would select

2The equation depends on the reward function for the generator. Here,R(b) =− ln(1−Dϕ(b)) from [Goo+14]
is used. The other reward functions introduced in this section yield a similar minimax games that require
two separate equations for their formulation.

138

6.1 ADVERSARIAL LEARNING

this action π(a|o). If the prior probability for both options is 1/2, then the decision rule (6.5)
follows directly from Bayes’ theorem. While GAIL learns the full discriminator function Dϕ

directly, AIRL only learns an approximation of pE to evaluate the discriminator term.

The underlying idea is that the unknown reward function of the expert RE(o,a) induces a
probability distribution pE(a|o). Under this distribution, states with high rewards should be
more likely than states with low rewards, because the expert acts to maximize its rewards.
Among all conceivable distributions that fulfill this property, the maximum entropy distribution
[Fin+16; FLL18]

pE(a|o) = exp(λRE(o,a))/Z(o), (6.6)

is the distribution that expresses the maximum uncertainty with λ and Z(o) chosen such
that the integral of the distribution is 1. Any other distribution is biased, as it assigns higher
probabilities to some states than what would be reasonable. A detailed explanation of the
maximum entropy principle including a proof can be found in Appendix B.3.

AIRL approximates pE by introducing a neural network gϕ that replaces pE in (6.5) with

p̂E(a|o) = exp(gϕ(o,a)), (6.7)

such that gϕ approximates λRE(o,a)− ln(Z(o)) and can therefore be interpreted as a scaled
and shifted approximation of the expert advantage function, whose maximum indicates the
best action a for a given observation o. The optimal behavior is invariant to shifting or scaling
the rewards with λ > 0.

As with GAIL, the discriminator neural network gϕ(o,a) is trained by maximizing the binary
cross entropy classification loss ℓ(DE ,DS) introduced in (6.1). To train the policy, the reward
functionR2 introduced for GAIL is maximized using RL. Inserting the AIRL discriminator
D(o,a) of (6.5) with the approximated expert policy probability density function p̂E (6.7)
into

R2(o,a) = ln(Dϕ(o,a))− ln(1−Dϕ(o,a)) (6.8)

= ln
(

p̂E(a|o)
p̂E(a|o)+π(a|o)

)
− ln

(
π(a|o)

p̂E(a|o)+π(a|o)

)
(6.9)

= ln(p̂E(a|o))− ln(π(a|o)) (6.10)

= gϕ(o,a)− ln(π(a|o)) (6.11)

reveals that gϕ(o,a) can be interpreted as the reward function that the agent maximizes. The
second term − ln(π(a|o)) of (6.11) has an information theoretic interpretation [Fin+16]: It
rewards the information that an action a bears, given the current policy and observation.
The expected information is minimal, when the policy always selects the same action; it is
maximal, when the policy selects all feasible actions with equal probability. The expected

139

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

information is known as the entropy [CT06]. Rewarding the policy for higher entropy is a
common practice in RL [Zie+08; Haa+18]. Policies with high entropy are desirable, because
they act as randomly as possible while striving for high rewards. This makes them robust to
disturbances and ensures better exploration, compared to policies with low entropy.

6.2 Adaptions for Behavior Prediction

To apply GAIL and AIRL in the simulation environment presented Chapter 3, multiple
adaptions are required. First, the adversarial training needs to be stabilized such that it
reproducibly converges to good results. Approaches to this are discussed in the following.
Secondly, as the algorithms are formulated for single-agent tasks, they need to be modified to
handle multi-agent situations, which is outlined in the last part of this section.

Training Difficulties GAN-based architectures are known for being notoriously difficult to
train [Sal+16; AB17], as the training is characterized by the competition between generator
and discriminator. There is no natural balance between the two; once the discriminator learns
to correctly classify most of the samples, it starts establishing a sharp decision boundary
between expert and synthetic samples to minimize the discriminator loss (6.1). In this case,
the discriminator assigns all inputs from the expert dataset probabilities close to 1 and all
inputs generated by the policy probabilities close to 0. As a consequence the gradient of the
discriminator output with respect to its input is almost everywhere close to 0. The generator
loses the chance to improve, as changing its actions does not increase its score assigned by
the discriminator, hence there is no signal in which direction to improve [AB17; ACB17].

To mitigate this phenomenon, multiple measures are taken to weaken the discriminator:

1. Following a suggestion from [AB17], additive Gaussian noise is applied to the dis-
criminator inputs during the discriminator training. Due to the additional noise, the
expert samples and the synthetic samples might overlap and the decision boundary of
the discriminator cannot be as sharp. This effect is illustrated in Figure 6.3

2. Following a suggestion from [FLL18] and [Bha+18], the synthetic dataset DS dur-
ing discriminator training contains not only experiences from the most recent policy
execution, but also experiences from 20 random earlier training epochs. Thus, the
discriminator cannot overfit to the most recent policy execution.

3. The discriminator input b is only a subset of the full observation vector. The idea behind
this is that in a lower-dimensional space, it is harder to draw a clear decision boundary
between the expert and synthetic experiences. This effect is illustrated in Figure 6.4.

140

6.2 ADAPTIONS FOR BEHAVIOR PREDICTION

5 0 5 10 15
0.0

0.5

1.0

Pr
ob

ab
ilit

y

Class 1
Class 2

5 0 5 10 15
0.0

0.5

1.0

Pr
ob

ab
ilit

y

Original
Noisy

Figure 6.3: Classification with noisy 1D training data: On the left, a classifier is trained to distinguish
between items from the two classes. The estimated probabilities of an item belonging to
class 1 (red line) are shown. As the classes are clearly separable, a sharp boundary exists
between the two. On the right, the estimated probabilities from a classifier which was
trained on the same dataset with additional Gaussian noise is shown. Due to the additional
noise, the two classes now overlap, and the decision boundary must be smoother. This
logic extends to classification in higher dimensions.

2 0 2 4

0.0

2.5

5.0

7.5

2 0 2 4 6
0.0

0.5

1.0

Pr
ob

ab
ilit

y

Class 1
Class 2

Figure 6.4: Classification in 2D and 1D: While a sharp decision boundary can be drawn in the 2D
classification problem on the left, the two classes overlap when projecting the data to one
dimension. As a result, the classification boundary of the 1D-problem cannot be as sharp.
The probability of an item belonging to class 1 (red line) smoothly transitions from 1 to 0
in the overlapping region.

141

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

Table 6.1: Components of the policy observation vector o, the full discriminator input vector, and the
restricted discriminator input vector. Equal to Table 3.1, all features are standardized
before processing them with a neural network.

Feature Policy Full Discriminator Restricted Discriminator

Speed ✓ ✓ ✓

Longitudinal acceleration ✗ ✓ ✓

Lateral acceleration ✗ ✓ ✓

Last steering angle ✗ (✓) (✓)

Distance to left and right boundary ✓ ✓ ✗

Heading relative to lane in {0,5,10,20}m ✓ ✓ ✗

Road curvature in {0,5,10,20}m ✓ ✓ ✗

Speed of preceding vehicle ✓ ✓ ✓

Distance to preceding vehicle ✓ ✓ ✓

Distance to next yield line ✓ ✓ ✓

Speed of conflicting vehicle ✓ ✓ ✓

Distance of conflicting vehicle to merge zone ✓ ✓ ✓

Angle of conflicting vehicle to merge point ✓ ✓ ✗

Speed of 2nd conflicting vehicle ✓ ✓ ✗

Distance of 2nd conflicting vehicle to merge zone ✓ ✓ ✗

Distance to next priority merge zone ✓ ✓ ✗

Speed of non-priority vehicle ✓ ✓ ✗

Distance of non-priority vehicle to merge zone ✓ ✓ ✗

Legend: ✓: Feature included, ✗: Feature excluded, (✓): Feature optional, see experiments section

Restricted Discriminator Inputs Besides weakening the discriminator, restricting its input
space has further advantages: Ho et al. [HE16] argue that the policy learns to match the
occupancy of the real world data in the discriminator feature space. Through this mechanism,
it can be controlled in which regard the distribution of the policy features is similar to the
expert demonstrations.

This idea is used to select the features that form the restricted discriminator inputs, listed in
Table 6.1: First, the policy should exhibit similar kinematics to the experts, i.e., the speed
and longitudinal and lateral acceleration. As the distance between the front and rear axle
to the center of gravity, lf and lr, are assumed to be fixed in this thesis, this renders the
steering angle redundant, which can be seen when filling in (3.4) into (3.6). To test whether
the steering angle can therefore be omitted as a discriminator input, it is optionally included
during training.

Secondly, the relation to the preceding vehicle should be similar between policy and experts,
such that the policy exhibits realistic car-following behavior. For this purpose, the distance to
and the speed of the preceding vehicle are included.

The MARL experiments in Section 5.4.2 have shown that the reward function must reward the
compliance with right-of-way rules. These are not explicitly specified to the discriminator, but
the required information to deduce them should be contained in the input vector. Therefore,
thirdly, the distance of the agent to the next yield line, the distance of the closest conflicting
vehicle (with priority) to the merge zone and its speed are part of the feature vector.

142

6.2 ADAPTIONS FOR BEHAVIOR PREDICTION

These eight features form the restricted discriminator input vector. The remaining features
listed in Table 6.1 continue to be observations, i.e., inputs to the policy. They are essential
for controlling the vehicle, such as the future road curvatures or the distance to the boundary,
but are in part determined by the environment: The policy cannot control the curvature or
the width of the road. While the policy is trained in the same environment where the real
world data was captured for now, this might become important when the training environment
differs. For example, the discriminator could learn to distinguish between the training and the
expert environment instead of the features exhibited by the behavior policies.

For this reason, and to reduce the dimensionality of the discriminator input, training is
performed on the proposed restricted discriminator input vector. To assess the impact on the
prediction performance, the training is also performed with a full discriminator input, which
contains all features listed in Table 6.1. All features are standardized using the values listed
in Table 3.1 before feeding them into the policy, value, or discriminator neural network to
ensure that the training is not hampered by the different scales of the original features.

Multi-Agent Adaptions IRL algorithms are typically formulated for the single-agent
case, including GAIL and AIRL. To adapt the methods to multi-agent settings, the ensuing
challenges and required modifications are similar to MARL, as described in Section 5.2, and
briefly recapitulated in the following.

The simulation environment is populated with multiple independent agents, as described
in Chapter 3. Agents can interact with each other, as they are represented in each other’s
observation vector. Parameter sharing is used, such that each agent is controlled by the same
policy. The parameter-sharing variant of PPO, as lined out in Section 5.2, is used for the
policy training. Hereby, the GAIL or AIRL discriminator acts as the reward function. The set
of synthetic trajectories, which is used for training the discriminator, is constructed from the
trajectories of all agents in the traffic situation.

The original GAIL and AIRL algorithms do not consider the case of an agent being able
to willingly terminate its simulation. However, this is possible in the simulation framework
used in this work, as the simulation of an agent is terminated when it leaves the track or
collides with another agent. This leads to a curious effect: During training, the discriminator
typically has the edge over the generator and assigns a probability of less than 0.5 to the
majority of the generator samples, thereby correctly identifying them as stemming from the
generator. As a result, the rewards (6.3) assigned by the discriminator are on average negative,
which becomes clear when evaluating the reward functionR2(b) for a probability assigned by
the discriminator D(b)< 0.5. To avoid the pain of permanently receiving negative rewards,
agents learn to drive off the track as fast as possible. A simple remedy is to add a constant
positive offset c to the rewards, as hinted in (6.3). If c is sufficiently large, the agents are

143

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

encouraged to remain in the simulation, despite being exposed by the discriminator.3 Besides
introducing this “survival instinct” to the policy, the optimal behavior is unchanged with
respect to the discriminator reward.

6.3 Related Works

Conventional IRL, Linear Rewards One early example of applying IRL to the problem of
predicting human trajectories is presented by Ziebart et al. [Zie+09]. In a single-agent setting,
the goal is to predict the future movement of pedestrians in an office environment. A grid map
of the situation is established that contains different reward features per cell, i.e., a constant
reward of that position, an indicator whether the cell is free or occupied, and indicators of
the distance to the closest obstacle. The reward function is a linear combination of six terms
Ri, weighted with ωi and evaluated at cell y, i.e.,R(y) = ω1R1(y)+ω2R2(y)+ Using
maximum entropy IRL [Zie+08], the weights of the features are determined to maximize the
probability of observed trajectories under the resulting reward function. Later, predictions
are made by planning under this reconstructed reward function. This idea is picked up and
extended by [Kit+12], who use a semantic perception of the environment using computer
vision to determine different features that influence human behavior in a parking lot, such as
vehicles, pavement, grass or sidewalks.

With the goal of controlling the motion of an automated vehicle on a highway similar
to how humans would control it, Kuderer et al. [KGB15] use maximum entropy IRL to
determine the weights of a reward function that incorporates a total of nine terms, rewarding
or penalizing the kinematic state as well as being close to surrounding vehicles. Using the
estimated reward function, they later demonstrate that a motion planner optimizing for this
reward function displays acceleration profiles and performs lane changes comparable to the
demonstrations. However, the work only considers low-level motion planning and assumes
the tactical decisions, e.g., whether to change lanes to overtake, to be given. A similar idea,
extended to combined behavior and motion planning, is presented in [Ros+19].

GAIL and AIRL, Neural Network Based Rewards All previously discussed works
approach the problem with maximum entropy IRL [Zie+08], which recovers the weights of
a linear reward function. This imposes a limit on the class of reward functions that can be
recovered, as the shape of the reward terms (e.g., quadratic penalty on accelerations, linear
reward for velocity) needs to be known in advance. Moreover, it is very time-consuming,
because it requires repeatedly performing a full RL training with different weights for the
reward function terms. Hence, Kuefler et al. [Kue+17] explore GAIL for the purpose of

3In practice, this work uses c= 3, which ensures positive rewards when the discriminator assigns a probability
> .05.

144

6.3 RELATED WORKS

predicting and simulating driver behavior on highways. The environment representation for
the policy and the discriminator is constructed by sending out 20 virtual beams around the
simulated vehicle, and measuring the distance until the beam hits an obstacle. To adequately
represent the environment to the policy, this requires the use of a RNN to fuse observations
over multiple timesteps, thus moving away from the theoretical foundation of the Markov
assumption, which is a fundamental simplification made in most RL algorithms. Otherwise,
the policy could not react to surrounding objects when they are briefly not hit by a beam.

All previously mentioned works consider only the single-agent problem, which leads to
unrealistic behavior: Applying the learned policy in a multi-agent environment, [Kue+17]
reports collision rates above 10% for their model, as only one vehicle is controlled by the
policy and the surrounding vehicles are played back from the dataset. Hence, the surrounding
vehicles are incapable of reacting to the behavior of the simulated vehicle. Bhattacharyya
et al. [Bha+18] aims to address this problem by extending the work from [Kue+17]: Using a
training curriculum to stabilize the training progress, the policy successively controls larger
portions of the vehicles in the simulated traffic scene, while the remaining vehicles are played
back from the data. Finally, all vehicles are controlled by the policy. To realize this approach,
a parameter sharing variant of TRPO proposed in [GEK17] is combined with GAIL. While
this improves the prediction RMSE compared to single-agent training, the collision rate is still
larger than 10%. To rectify this deficiency, a followup work [Bha+19] augments the GAIL
reward by a term that penalizes off-track driving, collisions and hard braking. This pushes the
reported collision rate down to around 3%. An overview of this line of research by a Stanford
group is given in [Bha+23].

In the context of automated driving, AIRL has been applied by [Wan+21]. Thereby, the goal is
to learn a high-level policy for an automated vehicle that selects one of three gaps for merging
into a neighboring lane in a highway scenario. However, the goal of the work is to control
an automated vehicle, not behavior modelling. Only the high-level lane-change decision is
made by the policy, while the low-level trajectory is determined two controllers for lateral
and longitudinal movement. This approach is unsuitable for behavior modelling, because
the nuances of driving behavior cannot be captured, e.g., how the vehicle accelerates before
changing lanes, or how fast the lane change is performed. Moreover, the policy is learned only
for one vehicle, whereas the surrounding vehicles are controlled by a traffic simulation.

Novelties in This Work This work, along with the associated publication [Sac+22b], is the
first to use AIRL for low-level trajectory control in a multi-agent setting. With this, the most
relevant related works by Bhattacharyya et al. [Bha+18; Bha+19; Bha+23] are extended in
the following ways: First, the AIRL discriminator can be interpreted as a reward function,
whereas the GAIL discriminator has no comprehensible meaning. In the following, this
is used to generate an insight on the reward function that AIRL maximizes. This helps to

145

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

interpret the learned behavior, because it explains the goals that the policy tries to achieve.
Moreover, this work proposes to use the learned AIRL reward function to train in additional
fictional situations on a new map. The situations are initialized to contain many critical
situations, e.g., near collisions. It is shown that this helps learning a policy that has a lower
collision rate and generalizes better to untrained situations.

Secondly, the observation vector with semantically meaningful features, known from previous
chapters, is used for training the policy and the discriminator. Besides using AIRL, this is
another prerequisite for being able to interpret the discriminator as a reward function, because
each discriminator input has a semantic meaning. Moreover, this allows for the targeted
limitation of the information that the discriminator uses for its decision. This is used for
deciding in which regards the learned policy should resemble the real-world driver behavior,
and which features can be ignored. Both would not be possible with the abstract beam-based
environment representation used in the works by Bhattacharyya et al.

Thirdly, in contrast to most surveyed works which operate on highway scenarios, the experi-
ments in this section are performed in highly interactive urban roundabout situations. Together
with the previous chapters, this allows for a systematic comparison of different approaches
to behavior modeling under equal conditions. The ideas from this chapter have also been
transferred to highway scenarios in [Rad+23].

6.4 Experiments

Training both GAIL and AIRL involves a standard RL training. For this, the same simulation
environment is used as for RL and multi-step BC training, described in Chapter 3. In contrast
to multi-step training, the simulation environment is not required to be differentiable, as the
gradient of the discriminator rewards with respect to the policy parameters is approximated
stochastically.

The experiments are designed to shed light on the following research questions:

• Are the proposed multi-agent variants of GAIL and AIRL suitable for learning a driving
policy that accurately models human behavior?

• Can the failure rate be reduced compared to BC approaches, by explicitly penalizing
collisions and driving off track?

• Does a restricted set of inputs which are deemed relevant for the discriminator facilitate
the learning task and lead to better policies?

• Can the AIRL discriminator be interpreted as a reward function, and what is the structure
of the reconstructed reward?

• Further, can the AIRL discriminator be used for training in additional fictional situations,
and does this improve the learned policies?

146

6.4 EXPERIMENTS

Equal to BC, a dataset of trajectories is required for training the discriminator and thereby
indirectly the policy. To this end, the same training, validation, and test datasets as for BC
are used, as described in Section 3.3. Besides using the training dataset for training the
discriminator, the simulation for learning the policy is initialized with situations from the
dataset, such that the initial simulation state is always a realistic state from the real world.

The problem of finding the optimal policy is now non-stationary in three ways: First, the
expected returns of the experience collected during one epoch change while the policy changes,
which is addressed by the PPO algorithm, as lined out in Section 5.1.3. Secondly, due to the
multi-agent setting, the environment dynamics change when the policy changes, as explained
in Section 5.2. For both GAIL and AIRL, additionally, a third non-stationarity is introduced
by the discriminator, which amounts to the goal of maximizing a reward function that is
changing during the course of training. Despite this challenging problem setup, the Adam
optimizer [KB15] that is also employed for training all other models in this work empirically
delivers good and reproducible results.

The prediction performance of the policy is evaluated after each epoch. Again, two key perfor-
mance criteria are used: First, the failure rate (collisions and off track driving), which should
be close to 0 and measures the plausibility of the model. Secondly, the along-track prediction
RMSE of 8 s-predictions is evaluated, which measures the precision of the predictions. Both
are evaluated on the training set, which is used to train the discriminator, and on the validation
set, which is not used for training.

With two criteria to be minimized, there is no longer a clearly defined best result. Here, the
best policy is defined as the policy that exhibits the lowest failure rate on the validation set.
Often, there are multiple policies with equal failure rate, as the validation set contains only
approximately 300 vehicles, and many policies achieve close to zero failures. Therefore, if a
policy achieves the same minimum number of failures multiple times during the training, the
epoch with the lowest RMSE is considered the final result of that training run.

For a fair comparison with the performance of the BC algorithms in Section 4.3, the policy
operates on the same normalized observation vector, listed in Table 3.1, and has the same
network architecture, depicted in Figure C.1. The additional discriminator and value neural
network have the same architecture, but output only one single value.

Unlike in BC, no pre-training of the policies is performed or required. Training always starts
from scratch with initially random policy, value and discriminator neural networks. Due to
this, as well as the random sampling of actions during the policy rollouts in each RL epoch,
the training procedure is stochastic. To ensure significance of the results, each training run is
repeated seven times.

147

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

6.4.1 Generative Adversarial Imitation Learning

To better understand the GAIL algorithm, this section first illustrates the training progress for
one single successful training run. In the second part of this section, the effect of different
design decisions is investigated.

The training is performed for 200 epochs, but good results often emerge much earlier, after
approximately 50 epochs. One training run with 200 epochs takes approximately 45 min
on a single core of an Intel i7-9700 @ 3 GHz. Interestingly, the training duration per epoch
is approximately equal to RL,4 as the overhead due to the discriminator training is small
compared to the remaining steps that are also performed in the original RL algorithm. This is
a large benefit over classical IRL approaches such as [Zie+08], which repeatedly execute full
RL training runs until a suitable reward function is reconstructed.

Both the discriminator and the policy make multiple steps along the gradient per training
epoch, as they are trained on minibatches of size 2048 that are drawn from the full set of
experiences. Since the full set contains about 50000 experiences per epoch,5 the discriminator
neural network is updated approximately 25 times per epoch for a pass over the full batch of
experiences. The policy is trained with 20 passes over the full experience batch, leading to a
total of approximately 500 parameter updates per training epoch. Improving the policy by
making multiple passes over the experience batch reduces the amount of required simulations,
which is a key benefit of the underlying PPO algorithm, as discussed in Section 5.1.3. All
training parameters are listed in the appendix in Table C.5.

Training Progress Equal to RL, the policy is initialized with random parameters and
an initial policy standard deviation6 ln(σ) = 0,σ = 1, such that the policy initially selects
accelerations and steering angles approximately widely scattered among the available options,
c.f. Appendix B.2. As the feasible longitudinal accelerations are not centered around 0,
i.e., alon ∈ (−7,3)m/s2, this leads to an initial tendency to brake, explaining the initial large
negative mean displacement in the top left of Figure 6.5. Executing this random policy leads
to high initial failure rates, because many vehicles collide or leave the track, shown in the
bottom right of Figure 6.5. During training, the policy is executed stochastically, i.e., its
actions a are drawn from

a∼ π(a|o = o) = tanh(N (µa,Σa)), (6.12)

4Here, training is performed with approximately 1000 trajectories. In the MARL experiments, training with
500 trajectories for 1000 epochs took 3 to 4 h. In both cases, one training epoch takes between 11 and 14 s.

51007 vehicles simulated for 50 steps, but some simulations terminate early due to vehicles colliding, leaving
the track laterally or leaving the map. This amounts to approximately 2.8 hours of simulated driving per
training epoch.

6See Section 5.3.2 for a recap of the policy standard deviation and the description of how the policy neural
network parameterizes the action distribution.

148

6.4 EXPERIMENTS

0 50 100 150 200
Epoch

40

30

20

10

0

Mean displacement in m

Train
Validation

0 50 100 150 200
Epoch

10

12

14

16

18

20

22
Std. dev. of displacement error in m

Train
Validation

0 50 100 150 200
Epoch

10

20

30

40

50
Displacement RMSE in m

Train
Validation

0 1000 2000 3000 4000 5000
Discr. update step

0.0

0.2

0.4

0.6

0.8

1.0

Discriminator success rate
Simulated
Expert

0 20000 40000 60000 80000 100000
Policy update step

2.0

1.5

1.0

0.5

0.0
Log sigma value

Acceleration
Steering

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20
Failure rate

Train
Validation

Figure 6.5: Performance measures during one single GAIL training run. Prediction errors and failure
rates are measured for 8 s-predictions. Plots from top left to bottom right: The mean
displacement is the along-track distance between the predicted position and the true
position after 8 s, averaged over the set of training and validation trajectories. Negative
values mean that the prediction is behind the ground truth. For this displacement, also the
standard deviation and the RMSE are shown. Bottom: The discriminator success rate
shows how frequently the discriminator assigns a probability of more than 50% to the
correct class, which is displayed separately for the set of policy (simulated) and ground
truth (expert) trajectories. The log sigma value indicates the exploration noise of the
policy during training. As discussed on p. 112, the exploration noise is limited to a
minimum value of ln(σ) =−2 to ensure a stable training. Finally, the failure rate
measures the percentage of vehicles that collide or leave their route. It is lower in the
validation situations, because the actions are selected deterministically, whereas they are
drawn from the policy distribution in the training situations.

as this is required to estimate the policy gradient. Later, when the policy is used for making
predictions, it is executed deterministically with a = tanh(µa). As this is the use case, the
policy is also executed deterministically on the validation dataset. This explains why the
policy achieves lower failure rates on the validation data than on the training data.

At the beginning of the training, the randomly initialized discriminator emits meaningless
probabilities, and thus provides no useful training signal to the policy. After the random
initialization, it labels the majority of all inputs as stemming from the policy. As a result,
it initially has a high success rate in detecting inputs from the policy and a low success
rate in correctly labeling inputs from the expert, shown in the bottom left of Figure 6.5. A
classification is deemed successful when the discriminator assigns more than 50% probability
to the correct class.

149

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

The offset c = 3 dominates the rewards (6.3) assigned by the discriminator to the policy.
Thus, the implicit goal of all agents during early training is to not terminate early by avoiding
collisions or driving off the track. The policy rapidly learns a failure-proof method to ensure
that: braking to standstill and waiting for the end of the simulation. As shown in the bottom
right of Figure 6.5, the failure rate on the validation data rapidly drops to 0 during the first
few training epochs. Simultaneously, the RMSE prediction error is very large, as this is
clearly a strongly biased model for driver behavior, even worse than the initial policy that acts
completely randomly.

However, the discriminator quickly learns to recognize this behavior. After few training steps,
it correctly identifies more than 90% of all expert and simulated trajectories. In turn, this
improves the training signal for the policy, providing it with information of how expert-like its
observations look to the discriminator. Thereby, the discriminator guides the policy towards
better imitating the expert. Consequently, the displacement error decreases rapidly. As the
policy becomes better and better at imitating the expert behavior, the discriminator becomes
worse at distinguishing between the policy and expert observations, such that its success rate
decreases. After half of the training time has elapsed, an equilibrium between generator and
discriminator is reached, where neither of both further improves in fooling the other. At this
point, the discriminator correctly identifies approximately 70% of its inputs, i.e., assigns a
probability of more than 50% to the correct class. The best possible result for the policy
would be that the discriminator correctly classifies its inputs in 50% of all cases, i.e., that
it can only guess. The reason why the discriminator has a higher success rate is that the
policy does not perfectly imitate human driving, especially as it can only exhibit one behavior
style, whereas real driving styles captured in the dataset are diverse and behave differently in
the same situation. In terms of displacement RMSE and failure rate, the policy reaches its
optimum earlier, after approximately 50 training epochs, or 10 min of training time. In this
work, the epoch that achieves the lowest RMSE among all epochs with minimum collision
rate is selected as the training result.

To get a deeper insight into the functioning of the discriminator, its outputs after different
training epochs for a simple traffic situation are depicted in Figure 6.6. To generate the plots,
the discriminator is trained on the roundabout dataset. After different training epochs, it
is queried to classify the situation depicted in (a), where a vehicle is approaching another
standing vehicle with varying initial speed v and longitudinal acceleration alon. Based on
the information at this moment, the discriminator needs to decide whether it is looking at a
situation experienced by a real driver, or at a situation that the policy has caused.

Initially (b), the yet untrained discriminator outputs a probability close to 50%, regardless
of its input. After 12 epochs (c), it has learned to differentiate mostly upon the speed in
this situation: it assumes that any vehicle driving slower than 5 m/s most likely stems from
the simulated data. As shown in Figure 6.5, the policy has a tendency to brake during early

150

6.4 EXPERIMENTS

v = 0
d= 25m

v,alon variable

(a) Situation: The agent approaches a standing vehicle in 25 m on an otherwise empty, straight road with
variable speed and acceleration

0 2 4 6 8 10
Velocity in m/s

6

4

2

0

2

Ac
ce

le
ra

tio
n

in
 m

/s
²

(b) Initial

0 2 4 6 8 10
Velocity in m/s

6

4

2

0

2

Ac
ce

le
ra

tio
n

in
 m

/s
²

(c) After 12 epochs

0 2 4 6 8 10
Velocity in m/s

6

4

2

0

2

Ac
ce

le
ra

tio
n

in
 m

/s
²

(d) After , because they 50 epochs

0 2 4 6 8 10
Velocity in m/s

6

4

2

0

2

Ac
ce

le
ra

tio
n

in
 m

/s
²

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
es

tim
at

ed
 b

y
di

sc
rim

in
at

or

(e) After 124 epochs

Figure 6.6: GAIL discriminator output for the situation depicted in (a). In the plots, the red line
indicates the decision boundary, i.e., where the estimated probability of the sample
stemming from real or simulated data is 50%. The overlaid dashed line shows the
minimal constant acceleration required to avoid a collision. If the goal is to avoid a
collision while applying minimal acceleration, this is the optimal behavior. See the
accompanying text for an interpretation.

151

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

training, rendering low velocities and strong braking a reliable decision criterion to identify
policy behavior. However, as the training continues, the policy starts driving faster, and the
discriminator must find a new decision criterion. Without explicitly knowing the optimal
braking behavior, after 50 epochs (d), the discriminator estimates a high probability of the
data stemming from an expert, when the behavior is close to the optimal braking line. If
the agent accelerates or brakes much stronger than optimal, the discriminator assigns a low
probability. After 124 epochs (e), the policy has become more refined and acts similar to a real
world-driver. This makes the classification task for the discriminator harder: It can no longer
output a high probability when the behavior looks plausible, and output a low probability
when the behavior looks unrealistic. Now, a large area of plausible behaviors, i.e., slight
braking for low velocities, or stronger braking for higher velocities, can be expected to occur
under both, the policy and in the real data. Hence, the discriminator assigns a probability
between 40% and 60% to plausible behaviors of velocities between 0 m/s and 5 m/s and an
adequate deceleration, indicating that it cannot make a clear decision in these cases.

Design Decisions This work compares eight different training configurations for GAIL that
result from the Cartesian product of three binary decisions: 1.) Using a discriminator with full
or restricted features, c.f. Table 6.1. 2.) Training the discriminator with clean inputs or with
additional Gaussian noise. 3.) Using a discriminator with or without access to the steering
action.

The first two points are targeted to investigate whether the measures to smoothen the decision
boundary of the discriminator introduced in Section 6.2 are effective. The third point investi-
gates whether the last steering action is required as an input to the discriminator. This work
hypothesizes that this is a redundant feature, because the policy likely steers to control the
lateral acceleration, which is also included in the discriminator inputs.

Each training configuration is executed seven times to ensure significance of the results. The
resulting median failure rate and the minimum, median and maximum RMSE of all seven
runs for every configuration are displayed in Figure 6.7. Equal to the single training run
shown in Figure 6.5, all policies first learn to brake to standstill after few epochs, thereby
pushing their failure rate to 0 but increasing their RMSE. Then, the failure rate of all models
increases again as the policies learn to better imitate the expert. At the end of the training,
most configurations achieve similar results with a median failure rate between 1% and 3%
and a median RMSE between 12 m and 16 m in the unseen test situations. The failures can be
attributed almost exclusively (> 95%) to collisions and rarely to vehicles leaving the track.

All training configurations whose discriminator has access to the full observation vector
require significantly more epochs until the minimum RMSE is reached, compared to those
with restricted reward features. This might be explained by the larger dimensionality of the
input space of the discriminator. As a consequence, the decision problem becomes more

152

6.4 EXPERIMENTS

0 25 50 75 100 125 150 175 200
Training epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fa
ilu

re
 ra

te

Restr. rew. features, incl. action, noise
Restr. rew. features, incl. action, no noise
Restr. rew. features, excl. action, noise
Restr. rew. features, excl. action, no noise
Full rew. features, incl. action, noise
Full rew. features, incl. action, no noise
Full rew. features, excl. action, noise
Full rew. features, excl. action, no noise

(a) Median failure rate

0 25 50 75 100 125 150 175 200
Training epoch

10

15

20

25

30

35

40

45

50

RM
SE

 in
 m

Restr. rew. features, incl. action, noise
Restr. rew. features, incl. action, no noise
Restr. rew. features, excl. action, noise
Restr. rew. features, excl. action, no noise
Full rew. features, incl. action, noise
Full rew. features, incl. action, no noise
Full rew. features, excl. action, noise
Full rew. features, excl. action, no noise

(b) Median, min. and max. RMSE

Figure 6.7: GAIL: median failure rate and RMSE of 8 s-predictions on the validation dataset of
different configurations during seven training runs.

12 14 16 18 20
RMSE in m

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fa
ilu

re
 ra

te

12 14 16 18 20
RMSE in m

Restr. rew. features, incl. action, noise
Restr. rew. features, incl. action, no noise
Restr. rew. features, excl. action, noise
Restr. rew. features, excl. action, no noise
Full rew. features, incl. action, noise
Full rew. features, incl. action, no noise
Full rew. features, excl. action, noise
Full rew. features, excl. action, no noise

(a) Validation performance (b) Test performance

Figure 6.8: GAIL: Final model performance of each of the seven repeated training runs and the eight
configurations. The evaluation is performed for 10 s predictions on the validation dataset
(a) and the unseen test dataset (b).

difficult and requires more training data until the discriminator can confidently distinguish
between expert and synthetic inputs. Even at the end of the training, the configurations
with access to the full observation vector do not perform better than the configurations with
the restricted discriminator feature vector. This leads to the conclusion that no relevant
information is contained in the additional inputs and that the training can safely be performed
with the restricted discriminator inputs.

Another perspective on the training success is given in Figure 6.8, where the performance
of the best model of each of the seven repetitions and each of the eight configurations is
displayed for 10 s-predictions on the validation and test set. The best run is the epoch with the
lowest RMSE among all epochs with minimal collision rate on the validation data. Among
the total of 56 runs, 9 achieve 0 collisions on the validation dataset. Most models achieve a
collision rate below 2% and a RMSE below 17 m on the validation data. Among the 15 runs

153

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

with the lowest RMSE below 14 m, only one uses the full discriminator features. This is a
clear indicator that using the restricted discriminator inputs is beneficial. This observation
is confirmed on the test set: While the RMSE and the failure rate is generally higher than
on the validation set, most runs with the lowest RMSE and failure rate rely on the restricted
discriminator features.

Concerning the decision of including or excluding the steering action in the discriminator
inputs, no clear difference can be made out in Figure 6.7. The evaluation on the test data in
Figure 6.8b with restricted discriminator features also shows no clear preference, as the results
from both approaches are close to each other. However, when using the full discriminator
feature vector, the configurations that include the action exhibit approximately 3 m lower
RMSE values.

Finally, the effect of additional noise during discriminator training is investigated. While the
best models on the test data in Figure 6.8b use discriminator noise, the corresponding noise-
free models exhibit only slightly higher RMSE and failure rates. Hence, this improvement
proves to be unnecessary. Adding noise to the discriminator inputs is for example proposed in
[AB17] to fix vanishing gradient issues in GAN, typically used for image generation. As the
dimensionality of feature-based policy learning in this thesis is significantly lower, this might
explain why no discriminator noise is required for successful training.

With this, it can be concluded that the most effective way of improving the model performance
is to use a discriminator that operates on the proposed restricted input vector, instead of
the full observation vector used by the policy. For the restricted input vector, the model
performance is barely affected by the additional steering input, such that it can also be left out.
The additional noise during discriminator training also improves the final model performance
only slightly.

Feature Matching As previously described, the discriminator bases its decisions on a
restricted feature vector b, listed in Table 6.1. To illustrate the impact on the learned policy,
the features are evaluated for every timestep and every vehicle in all 10 s-situations in the
unseen test set. The same situations are predicted using the learned policy, starting from the
initial situation state. Again, the discriminator features are evaluated for every timestep and
vehicle. The histogram of each feature in the real-world dataset and in the predicted dataset
is depicted in Figure 6.9.7 The histograms are largely overlapping, which shows that the
policy exhibits behavior that resembles the real-world drivers. However, some features by the
policy are more concentrated than the corresponding real-world features. For example, the

7The number of elements used for computing the histograms varies, because not every feature is available at
every timestep (e.g., the distance to the preceding vehicle) and because the trajectories are evaluated in a
limited area, which the real-world vehicles leave after a different number of steps than the simulated vehicles.
Therefore, the histograms display the estimated density instead of the absolute number of occurrences.

154

6.4 EXPERIMENTS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25 Real, N=65645
Simulated, N=61715

(a) Speed in m/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25 Real, N=48706
Simulated, N=42468

(b) Speed of preceding vehicle in m/s

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8 Real, N=65645
Simulated, N=61715

(c) Longitudinal acceleration in m/s2

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0 Real, N=65645
Simulated, N=61715

(d) Lateral acceleration in m/s2

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08
Real, N=39240
Simulated, N=33904

(e) Distance to preceding vehicle in m

0 10 20 30 40
0.00
0.01
0.02
0.03
0.04
0.05
0.06 Real, N=24800

Simulated, N=18895

(f) Distance to yield point in m

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Real, N=25671
Simulated, N=18232

(g) Speed of the closest conflicting vehicle in m/s

0 5 10 15 20
0.00

0.02

0.04

0.06

Real, N=18662
Simulated, N=13282

(h) Dist. of closest conflicting vehicle to yield in m

Figure 6.9: Feature matching in GAIL: The normalized histograms show the distribution of the
restricted feature vector (Table 6.1) that the discriminator uses to decide whether it is
confronted with data from the real world recording or from the simulation. The
histograms for the simulated data are constructed by executing the simulation starting
from the initial situations of the real world test data set. It becomes clear that the policy
has learned to exhibit features that are similarly distributed to the real world data.

155

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

real-world speed distribution has a peak around 7 m/s, the typical speed of vehicles inside
the roundabout. For higher velocities, the density fades out slowly, as different drivers tend
to leave the roundabout at different velocities. The speed feature from the policy exhibits a
similar peak at around 7 m/s. However, it also has an additional peak around 9 m/s, which
is due to the agents accelerating to this velocity when leaving the roundabout. As there is
only one homogenous policy that is executed by all agents, there is no variety in this behavior,
unlike in the real world driving behavior.

Conclusion GAIL manages to learn a policy that successfully imitates the behavior from
real-world recordings for all surveyed training configurations. The training is shaped by
the competition between the policy and the discriminator, illustrated in the bottom left plot
of Figure 6.5. After few training epochs, the discriminator learns to identify features of
real-world driving, and thereby encourages the policy to also exhibit these features. At the
end of training, the features of real-world drivers and the learned policy largely overlap, as
illustrated in Figure 6.9.

All training runs converge within 50 to 150 training epochs to 8 s-RMSE values between 12
and 20 m and failure rates below 5%, shown in Figure 6.7. The best models achieve failure
rates of approximately 1% on unseen test data and a 10 s-RMSE of about 14 m.

The experiments in this section show that applying prior knowledge, i.e., training the discrimi-
nator with a manually selected feature vector instead of the full observation vector, accelerates
the training progress without compromising the prediction performance. Further, the experi-
ments show that the discriminator input vector does not need to include the steering action, as
this is a redundant feature that can also be deduced from the lateral acceleration. Thirdly, using
additional noise on the discriminator inputs during training does not significantly improve the
final policy performance and hence is not required.

6.4.2 Adversarial Inverse Reinforcement Learning

Next, policies trained with AIRL are examined. As described in Section 6.1.2, the algorithm
is based on GAIL, but imposes a special structure on the discriminator that allows it to be
interpreted as a reward function. Apart from the changed discriminator, everything else
remains unchanged and the same training parameters as described in Section 6.4.1 and listed
in Table C.5 are used.

The training progress is similar to GAIL. For one single run with equal configuration to the
GAIL-training from Figure 6.5, it is depicted in Figure 6.10. At the beginning of the training,
the policy learns to brake to standstill to avoid collisions and the failure rate rapidly drops to 0.
The discriminator quickly learns to distinguish between policy and real world demonstrations
and correctly classifies approximately 90% of all inputs. This signal, in turn, teaches the RL

156

6.4 EXPERIMENTS

0 50 100 150 200
Epoch

40

30

20

10

0

Mean displacement in m

Train
Validation

0 50 100 150 200
Epoch

10

12

14

16

18

20

Std. dev. of displacement error in m
Train
Validation

0 50 100 150 200
Epoch

10

20

30

40

Displacement RMSE in m
Train
Validation

0 1000 2000 3000 4000 5000
Discr. update step

0.0

0.2

0.4

0.6

0.8

1.0

Discriminator success rate
Simulated
Expert

0 20000 40000 60000 80000 100000
Policy update step

2.0

1.5

1.0

0.5

0.0
Log sigma value

Acceleration
Steering

0 50 100 150 200
Epoch

0.00

0.05

0.10

0.15

0.20
Failure rate

Train
Validation

Figure 6.10: Performance measures during one single AIRL training run. Prediction errors and failure
rates are measured for 8 s-predictions. Further descriptions in text.

policy to act more realistically and leads to a decreasing RMSE of the displacement between
predicted and real trajectories. In this training run, the minimum of RMSE and failure rate is
reached after approximately 40 epochs. During further training, both measures fluctuate but
do not continue to improve. The minimum displacement RMSE and failure rate is similar to
GAIL.

Unlike in GAIL, the exploration noise of the standardized steering angle action does not reach
its lower bound σ = e−2, as shown in the middle bottom plot of Figure 6.10. This means that
the distribution from which the steering actions are drawn from is more dispersed than the
action distribution of the GAIL policy, c.f. Figure 6.5. The reason for this phenomenon is
that the AIRL policy is not only rewarded for resembling the ground truth data as closely
as possible via the reward approximator gϕ(o,a) inside the discriminator in (6.11), but also
simultaneously for doing this with maximum entropy with − ln(π(a|o)), i.e., for selecting its
actions as randomly as possible during training.

Interpreting the Learned Reward Function As previously stated, the AIRL discriminator
can be interpreted as a RL reward function. To investigate the learned reward function,
eight repeated training runs with restricted discriminator inputs are executed, c.f. Table 6.1.
As the previous experiments have shown that the steering angle is a redundant feature, it
is not part of the restricted feature vector. For the experiment, the reward-approximating
neural network gϕ(b,a) is evaluated for different variations of its inputs. To this end, an
uncritical traffic situation, in which there is no preceding nor conflicting vehicle present,
is simulated. Hence, the kinematic discriminator features are set to the following values:

157

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

0 2 4 6 8 10
Velocity in m/s

10

8

6

4

2

0

2

4

Re
wa

rd

(a) Speed

6 4 2 0 2
Longitudinal acceleration in m/s²

20

15

10

5

0

Re
wa

rd

Run 0
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7

(b) Longitudinal acceleration

4 2 0 2 4
Lateral acceleration in m/s²

8

6

4

2

0

2

Re
wa

rd

(c) Lateral acceleration

Figure 6.11: Rewards reconstructed with AIRL discriminators of eight different training runs. The
plots are constructed by varying one feature at the input of the discriminator neural
network gϕ while keeping the remaining features fixed to the values described in the text.

v = 7m/s, alon = alat = 0m/s2. The features that describe the interaction with the non-
existing surrounding vehicles are set to their default values listed in Table 3.1. With all other
features fixed to these values, one kinematic feature at a time is varied: First, the speed v,
then the longitudinal acceleration alon, and finally the lateral acceleration alat is varied in
Figure 6.11.

The training result is reproducible and produces similar results for all eight repetitions.
The reconstructed rewards resemble the manually defined reward function in Section 5.3.1:
Progress along the track is encouraged by a monotonically increasing reward for the speed.
The reward for the longitudinal and lateral acceleration is maximum when their value is
0 m/s2. It decreases smoothly and symmetrically around the maximum, similar to a quadratic
function. This result carries more information: Despite having the possibility of learning
complicated functions with the discriminator neural network, the reward of the longitudinal
acceleration is symmetrical, i.e., accelerating is penalized equally hard as braking. The penalty
for braking very hard eventually levels off after alon = −3m/s2, which indicates that the
model has learned that braking strongly is undesirable, but tolerable if necessary. Also, unlike
the manually defined reward function, longitudinal and lateral accelerations are weighted
differently: The penalty for longitudinal accelerations increases approximately 2-3 times as
fast as the penalty for lateral accelerations.

However, there are limitations: In Figure 6.11c, four training runs have learned a slightly
unsymmetrical reward function for the lateral acceleration. The model expresses a preference
for lateral accelerations around 2 m/s2. Considering the lateral accelerations experienced by
real drivers in Figure 6.9d, the reason becomes clear: This is the typical acceleration that
vehicles experience when driving through the roundabout. As there are many vehicles driving
with this acceleration, some models seem to have learned that it is desirable to drive with that
specific lateral acceleration. The more intuitive causal explanation—that this acceleration

158

6.4 EXPERIMENTS

emerges as a tradeoff between the desire to make progress and the aversion to experience
accelerations—has not been learned in these training runs.

Transfer to New Situations Obtaining real-world trajectory data is an expensive and
time-consuming process. Further, some important situations are so rare that it is practically
impossible to design a measurement campaign for them. One example are collisions and close
collisions. This section addresses the issue by using the reconstructed reward function from
AIRL to train in additional fictional situations, besides the hitherto used situations initialized
from the real-world drone recordings. To this end, the AIRL algorithm is slightly altered:
The discriminator is left unchanged, learning to classify between real-world observations and
observations obtained by executing the policy for all agents from an initial real-world situation
on. The policy, however, is trained to maximize the rewards assigned by the discriminator
reward function in both, the situations initialized from the real world and the additional
fictional situations.

To demonstrate the idea, the fictional situations are set up on a map of the right roundabout
from Figure 3.4, for which no real-world training data is used. Further, to experience roads
with different curvatures, some vehicles drive on a meandering course, a slightly curved
track, and a clockwise circular track. Finally, some vehicles are set up to interact with each
other in standard unsignalized right-of-way crossings. The map of the fictional situation
is depicted in Figure 6.12. Similar to Section 5.4, the traffic density and the initial speed,
position and heading of the vehicles is randomly initialized for each simulation. The vehicles
are placed with high traffic densities in a way to maximize interaction between them and
to stimulate critical situations. For example, some vehicles are placed up to 10 m behind
other vehicles with a delta velocity of up to 14 m/s, making a collision inevitable with the
maximum possible deceleration of −7 m/s2. Most situations are less dramatic, but require
strong braking to avoid a collision.

Altogether, the training is now executed on the real-world training dataset encompassing 1007
vehicles, also used for training all other models, and additionally in 50 fictional 10 s-situations
with an average of 25 vehicles per situation. The number of vehicles varies randomly between
the different situations to simulate high and low traffic densities. The total training duration
for 200 epochs with the additional fictional situations is approximately 1 h, compared to
45 min without the additional situations.

To assess the improvement, seven training runs are performed with additional training in the
fictional situations and compared to training runs without the additional training. Equal to the
GAIL experiments, the experiments are performed once with access to the full discriminator
feature vector, and once with the restricted features. The results are plotted in Figure 6.13.
Overall, the plots resemble the training progress of GAIL in Figure 6.7. In all cases, the
failure rate rapidly drops to low values. The models obtain low RMSE values faster when

159

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

Figure 6.12: The fictional track used for training with vehicles placed according to the random
initialization scheme

0 25 50 75 100 125 150 175 200
Training Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fa
ilu

re
 ra

te

Full rew. features
Full rew. features, extra training
Restr. rew. features
Restr. rew. features, extra training

(a) Median failure rate

0 25 50 75 100 125 150 175 200
Training Epoch

10

15

20

25

30

35

40

45

50

RM
SE

 in
 m

Full rew. features
Full rew. features, extra training
Restr. rew. features
Restr. rew. features, extra training

(b) Median, min. and max. RMSE

Figure 6.13: AIRL: median failure rate and RMSE of 8 s-predictions on the validation dataset during
seven training runs. The plots show results for training with full or restricted
discriminator input (reward) features, and for training with or without additional fictional
situations.

160

6.4 EXPERIMENTS

the discriminator has access to the restricted features. Most configurations achieve prediction
errors between 10 m and 15 m.

While the configurations with access to the restricted discriminator feature vector exhibit the
lowest failure rates and RMSE after about 50 epochs before the failure rate increases again,
the configurations with the full discriminator feature vector improve more slowly during the
course of the training and achieve a median failure rate of 0 during multiple training epochs.
The slower learning can be explained by the more challenging task for the discriminator of
making its decision in a higher dimensional feature space, hence requiring more training data
and epochs until it can reliably classify its inputs.

Contrary to the expectation, training in the additional critical situations does not improve
the failure rate in the validation situations. One reason for this could be that empirically,
most collisions occur between a vehicle that enters the roundabout and an inner-roundabout
vehicle. The fictional situations in this section however are initialized to mainly provoke
rear-end collisions. However, the additional training decreases the failure rate in the unseen
test situations and hence can be seen as a method to improve the generalization of the model,
as the evaluation in the next paragraph shows.

Comparison of All Training Configurations Similar to GAIL, different parameters are
varied to determine the most successful training configuration. To this end, again, three
binary decisions are compared: 1.) Providing the discriminator with access to the full or
restricted feature vector. 2.) Whether additional noise on the discriminator inputs is used
during training, to stimulate a smoother discriminator decision boundary. 3.) Training with or
without the additional fictional training situations. The combination of these decisions leads
to eight configurations. Each configuration is trained seven times to ensure the reliability of
the evaluations. The final model of each training run is determined by selecting the model
that has the lowest failure rate on the validation dataset. If there are multiple models with
equal minimum failure rate, the model with the lowest RMSE is selected among those.

The results are depicted in Figure 6.14. As the majority of the models achieves a failure
rate of 0 on the validation dataset, the analysis focuses on the performance in the unseen
test situations in Figure 6.14b. Overall, many models now achieve failure rates lower than
1%, which is significantly lower than the corresponding GAIL models in Figure 6.8b. The
final RMSE of most models is between 13 m and 18 m, similar to GAIL. It appears that an
inverse relationship exists between the RMSE and the failure rate of the examined models.
Specifically, those models exhibiting lower prediction RMSE tend to demonstrate higher
failure rates, and vice versa.

Similar to GAIL, the models which have access to the restricted discriminator features have
lower RMSE values than those with the full discriminator features. However, the failure rate

161

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

12 14 16 18 20
RMSE in m

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fa
ilu

re
 ra

te

12 14 16 18 20
RMSE in m

Restr. rew. features, noise, extra training
Restr. rew. features, noise
Restr. rew. features, no noise, extra training
Restr. rew. features, no noise
Full rew. features, noise, extra training
Full rew. features, noise
Full rew. features, no noise, extra training
Full rew. features, no noise

(a) Validation performance (b) Test performance

Figure 6.14: AIRL: Final model performance of each training run of the eight configurations. The
evaluation is performed for 10 s predictions on the validation dataset (a) and the unseen
test dataset (b).

of these models is comparatively large, indicating that the model has not learned to respond
appropriately to critical situations. Within the models with restricted discriminator features,
the additional training in fictional situations decreases the failure rate at the expense of a
higher RMSE. Training the discriminator with or without additional noise on its inputs does
not seem to influence the training significantly.

The models with access to the full discriminator feature vector demonstrate the lowest failure
rates, but have a slightly larger prediction RMSE than the models with restricted reward
features. Due to the generally low failure rate, the visual improvement of training in additional
fictional situations is only subtle in Figure 6.14. Comparing the median failure rate of the
runs with full discriminator features with and without extra training, the failure rate is lowered
from 0.47% to 0.27%, almost halving the remaining number of collisions.

For AIRL, it can therefore be concluded, that the most successful training runs are obtained
when the discriminator has access to the full feature vector, and that the training in additional
fictional situations further lowers the failure rate and improves the ability of the model to
generalize to unseen situations.

6.5 Conclusion

This chapter demonstrates the application of IRL methods to the problem of modeling driver
behavior. Hereby, the reward function that best explains the behavior of drivers in a dataset is
reconstructed by iteratively adapting the reward function and training a policy that maximizes
the rewards until the trajectories produced by the policy resemble the recorded trajectories.

Despite the algorithms originally being targeted at single-agent scenarios, this chapter shows
that GAIL and AIRL can be adapted to the multi-agent task of predicting interacting traffic
situations. For this purpose, the idea of parameter sharing from the previous chapter is

162

6.5 CONCLUSION

revisited. The indirection of reconstructing a reward function and performing RL with it
enables the approaches in this chapter to pursue two goals: Learning a policy that closely re-
sembles the behavior of the demonstrated trajectories, while observing the manually specified
requirements, i.e., avoiding collisions or leaving the track.

Novelties Compared to the related works, the central innovation in this chapter is the
application of AIRL to the problem of trajectory prediction. In contrast to conventional IRL
methods with a linear combination of reward features, AIRL represents the reward function
as a neural network. This is a more flexible and expressive representation that not only
determines the relative importance of reward terms with respect to each other, but also learns
the shape of the terms. Compared to GAIL, which has also been used in related works for
the purpose of behavior modelling, AIRL enables the interpretation of the discriminator as a
true reward function, which remains meaningful in different environments from the training
environment.

As a consequence, AIRL enables the training in additional fictional environments. By
setting up the fictional situations on a different map with critical initial states, the policy
is demonstrated to generalize better to unseen situations and to cause fewer collisions and
driving off track.

Combined with the semantically meaningful feature vector, known from previous chapters,
as the input to the discriminator, the shape of the reward terms becomes interpretable, as
demonstrated in Figure 6.11. This is a requirement for understanding the goal that the policy
tries to achieve during training.

The use of the interpretable feature vector enables two further applications that are demon-
strated in the experiments: First, it enables the targeted restriction of information that the
discriminator uses, thereby allowing the developer to decide which features should not play
a role in the reconstructed reward function. For example, some environment information in
the feature vector might be of relevance for the policy, such as the current road curvature,
but should not contribute to the decision of the discriminator whether it is observing real or
simulated behavior.

Secondly, the interpretable feature vector enables to evaluate the similarity between the
learned policy and the training data not only by directly comparing the trajectories, but also
by comparing the distribution of the features, as demonstrated in Figure 6.9. This brings an
additional insight into potential limitations of the learned policy, e.g., that it behaves more
homogeneously than real world drivers, as it always tries to select one specific speed when
driving inside the roundabout.

163

6 RECONSTRUCTING THE REWARDS: INVERSE REINFORCEMENT LEARNING

Results To answer the research questions from page 146, this chapter evaluates seven
independent training runs of eight different configurations of each, GAIL and AIRL. Except
from two outliers, all training runs successfully learn a policy that deviates from the test
trajectories with a 10 s-RMSE below 20 m and a failure rate below 5%. The training results
are obtained within 200 epochs, taking 45 min to 1 h, which is a negligible overhead compared
to standard RL training with a known reward function.

The best GAIL models, trained with a restricted discriminator feature vector, achieve a
prediction RMSE around 14 m with a failure rate around 1%. The failure rate is significantly
lower than the best BC model with around 3% collisions. A more extensive comparison
follows in the next chapter.

Figure 6.11 demonstrates that AIRL reproducibly reconstructs an interpretable and mean-
ingful reward function. The reward is used for training in additional fictional environments,
producing policies that exhibit a slightly larger RMSE around 16 m, but that are significantly
more robust with failure rates around 0.3%. In a direct comparison with AIRL policies that are
not trained in additional fictional situations, the failure rate is approximately halved. However,
the benefit of training GAIL with restricted discriminator inputs could not be reproduced for
AIRL, where the best models are trained with the full discriminator feature vector.

An extensive comparison of the performance of the BC and IRL methods presented throughout
this thesis is provided in the next chapter.

164

7 Comparison of All Models

After introducing different approaches to obtaining a driving policy in Chapters 4 and 6, this
chapter evaluates the methods by comparing their prediction accuracy, plausibility and the
ability to generalize to untrained situations. To assess the accuracy, the RMSE is compared.
To evaluate the plausibility, the failure rate across different situations is measured. The ability
to generalize is examined by contrasting these factors in situations that resemble the training
data with situations that are different. To ensure a fair comparison, the same training and test
data is used for all models. Also, the policy neural network architecture is identical.

This chapter is split into two parts. First, for a visual inspection, all models are executed in
the same traffic situation with the ground truth evolution of the situation for reference. In
the second part, the models are compared numerically. The performance is measured in one
location where the model has been trained, and in three other locations from which no training
data was used.

Multiple variations of the different methods were described in the respective chapters. Here,
only the best configurations of all models are compared. To display the final variation in
performance and to ensure reliability of the results, all evaluations are performed on seven
independent training runs. The models compared are:

• Single-step training,
• Multi-step training, trained with 8 s-trajectories,
• Multi-step training, trained with 16 s-trajectories,
• GAIL, trained with the restricted discriminator feature vector, no additional steering

input and additional noise during discriminator training, and
• AIRL, trained with the full discriminator input vector, without additional noise but with

additional training in fictional situations.

7.1 Visual Comparison of the Model Performance

First, one of the seven final results of each model is executed in a traffic situation for a visual
inspection of their prediction performance. The results are shown in Figures 7.1 and 7.2,
including the ground truth evolution of the situation in Figure 7.1a. Overall, all methods
provide a plausible prediction of the situation with all vehicles respecting right-of-way, waiting
in queues at the roundabout entries, driving through the roundabout at adequate velocities,
slightly cutting curves when entering and leaving the roundabout, and leaving the map at
similar velocities. However, in the simulations with the single-step model and with the

165

7 COMPARISON OF ALL MODELS

16 s-multi-step model, one vehicle drives off the track and its simulation is thus terminated
(vehicle #5 and #16).

Considering individual vehicles, all predictions remain remarkably close to the ground truth
evolution of the situation. For example, vehicle #1 and #12 leave the depicted frame in all
predictions around 5 s. Vehicle #1 is closely followed by #2 after about 7 s. After 10 s, #7 is
predicted close to the boundary of the field of view in all cases and #11 is still waiting to enter
the roundabout. Coming from south, #20 is predicted to have made approximately a half turn
in all predictions.

However, these predictions are all influenced relatively little by the predictions of other
vehicles, as they do not need to negotiate right-of-way at the roundabout entrance. One
vehicle that is subject to strong interaction is #9. After the vehicle in front of it has entered
the roundabout, #9 could either merge in front of #5 around 2 s, or after #5. With hindsight, a
large gap exists, but it remains unclear whether #9 could enter the roundabout, because the
intention of the potentially conflicting vehicles #7 and #16 of leaving the roundabout becomes
evident only relatively late. While the ground truth driver decides to enter the roundabout
directly after #5, the BC driver enters the roundabout very slowly, moving only a few meters
during the 10 s prediction. The MS-8 s and MS-16 s policy is more courageous and #9 also
follows #5 closely. The GAIL and AIRL policies are more careful and wait until a larger gap
for #9 emerges around 8 s, when clearly no conflicting vehicle is close. This is likely due to
the secondary goal of avoiding collisions.

As discussed previously, an incorrect prediction of one vehicle can have knock-on effects
on the prediction of other vehicles. For example, #20 is predicted to drive slightly faster by
the AIRL model than by all other models, thereby disallowing #13 to enter the roundabout
around 3 s, causing the final prediction of #13 to lag behind the ground truth position. Similar
knock-on effects can be observed for other models, e.g., the interaction between #15 and #20
in the single-step model. Nevertheless, the prediction often stays impressively close to the
ground truth, e.g., the fact that #19 merges into the gap between #16 and #20 after about 9 s is
predicted correctly by three models.

7.2 Quantitative Evaluation

While the comparison in the previous section gives a visual insight on the plausibility of the
policies, this section aims to make reliable statements on the overall prediction performance
of the models. The central properties that the policies should fulfill are plausibility, accuracy,
and generality. The plausibility is measured by evaluating the number of vehicles that collide
or leave the track when following the policy, as these events rarely occur with real drivers.
The accuracy is measured by comparing the prediction of the model to the true evolution of
the same traffic situation and evaluating the deviation between both. As the dataset used in

166

7.2 QUANTITATIVE EVALUATION

1
2

3
4

5

6

7891011 12

13

14

1516
17

18
19

20 21
1

2

3
45

6

7
8

91011 12

13

14

1516

17

18 19

20
21

23 1

2

3
4

5

6

7

8
9

1011
12

13

14

15
16

17

18
19

20
21

22
23

1

2

4

5

6

7

8

9
1011

12

13

14

15

16

17

18
19

20
21

22 23

2

4

5

7

8

9
1011

13

14

15

16

17

18 19

20
21

22 23

24

5

7

8

9
1011 13

14

15

16

17

18 19

20

21
22 23

24 25

5

7

8
9

10
11

1314

15

16

17

18
19

20

21
22 23

24
25

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5

7

8
9

10
11

13

14

15

16

17

18
19 20

2122 23
24

25
26

9.8 s

(a) Ground truth evolution of the traffic situation

1
2

3
4

5

6

7891011 12

13

14

1516
17

18
19

20 21
1

2

3
45

6

78
91011 12

13

14

15
16

17

18 19

20
21 1

2

3
4

5

6

7

8
91011

12

13

14

15
16

17

18 19

20
21

1

2

4

6

7

8

91011

12

13

14

15

16

17

18 19

20
21

2

4

7

8

91011
13

14

15

16

17

18 19

20
21

7

8

9
1011 1314

15
16

17

18 19

20
21

7

8

9
1011

13
14

1516

17

18 19

20

21

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

7

8

9
10

11

13

14 15
17

18 19

20

21

9.8 s

(b) Single-step behavior cloning model prediction

1
2

3
4

5

6

7891011 12

13

14

1516
17

18
19

20 21
1

2

3
45

6

78
91011 12

13

14

15
16

17

18 19

20
21 1

2

3

4

5

6

7

8
91011

12

13

14

15
16

17

18 19

20
21

1

2

4

5

6

7

8

9
1011

12

13

14

15

16

17

18 19

20
21

2

4

5

7

8

9
1011

13

14

15

16

17

18 19

20
21

4

5

7

8

9
1011 1314

15

16

17

18 19

20
21

5

7

8
9

10
11

13
14

15

16

17

18 19

20

21

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5

7

89

10
11

13

14

15

16

17

18
19

20

21

9.8 s

(c) Multi-step model prediction, trained with 8 s trajectories

Figure 7.1: Prediction of the evolution of the same original situation using different models

167

7 COMPARISON OF ALL MODELS

1
2

3
4

5

6

7891011 12

13

14

1516
17

18
19

20 21
1

2

3
45

6

78
91011 12

13

14

15
16

17

18 19

20
21 1

2

3
4

5

6

7

8
91011

12

13

14

15
16

17

18 19

20
21

1

2

4

5

6

7

8

91011

12

13

14

15

16

17

18 19

20
21

2

4

5

6

7

8

9
1011

13
14

15

16

17

18 19

20
21

2

4

5

7

8

9
10

11 1314

15

16

17

18 19

20

21
5

7

8
9

10
11

13
14

15

16

17

18 19

20

21

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5

7

89
10

11

13

14

15
17

18
19 20

21

9.8 s

(a) Multi-step model prediction, trained with 16 s trajectories

1
2

3
4

5

6

7891011 12

13

14

1516
17

18
19

20 21
1

2

3
45

6

78
91011 12

13

14

15
16

17

18 19

20
21 1

2

3 4

5

6

7

8
91011

12

13

14

15
16

17

18 19

20
21

1

2

4

5

6

7

8

9
1011

12

13

14

15

16

17

18 19

20
21

2

4

5

6

7

8

9
1011

13

14

15

16

17

18 19

20
21

5

7

8

9
1011 13

14

15

16

17

18 19

20

21 5

7

8

9
1011

1314

15

16

17

18 19

20

21

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5

7

8

9

10
11

13
14

15

16

17

18
19

20

21

9.8 s

(b) GAIL model prediction

1
2

3
4

5

6

7891011 12

13

14

1516
17

18
19

20 21
1

2

3
45

6

7
8

91011 12

13

14

1516
17

18 19

20
21

1

2

3
4

5

6

7

8
91011

12

13

14

15
16

17

18 19

20
21

1

2

4

5

6

7

8

91011

12

13

14

15

16

17

18 19

20

21

2

4

5

6

7

8

91011

13

14

15

16

17

18 19

20

21

5

7

8

9
1011

13

14

15

16

17

18 19

20

21 5

7

8

9
1011

13

14

15

16

17

18 19
20

21

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5

7

8
9

10
11 13

14

15

16

17

18 19
20

21

9.8 s

(c) AIRL model prediction

Figure 7.2: Prediction of the evolution of the same original situation using different models,
continuation of Figure 7.1

168

7.2 QUANTITATIVE EVALUATION

Figure 7.3: This map, based on a real untrained roundabout, is used exclusively for evaluating the
models. The vehicles are placed according to a random initialization scheme. The
depicted initialization has the maximum number of vehicles, other situations are
initialized with fewer vehicles.

this thesis is limited to two roundabouts, it is difficult to make statements on the generality
of the models. However, an attempt of estimating the ability to generalize to new situations
is made by evaluating the performance in situations at one roundabout that was not used for
training, and in additional fictional situations with randomly initialized vehicle states.

To this end, all seven training runs of each of the five models introduced in the beginning of
this chapter are executed on four sets of 10 s-situations:

• The test dataset, i.e., 118 unseen situations with 1432 trajectories in the training
roundabout,

• the unseen roundabout dataset, comprising 402 situations with 1918 trajectories,
• 200 fictional situations with a total of 4955 vehicles on the map that was used during

AIRL training,
• 200 fictional situations with 2501 vehicles at another untrained roundabout.

The two real-world roundabouts are shown in Figure 3.4. The map from AIRL training
is shown in Figure 6.12. To be successful in it, the policies are required to have learned
a behavior that is not specific to roundabouts: They need to handle regular right-of-way
situations, drive on a winding course, drive on a slightly curved road and on a clockwise
circular track. While the specific situations are initialized randomly and are hence unknown
to the AIRL policy, it has been trained with similarly initialized situations on this map. For
a fair comparison on a map that was not used in the training of any policy, the map of one
additional real roundabout is populated with randomly initialized situations. The map is
shown in Figure 7.3.

169

7 COMPARISON OF ALL MODELS

13 14 15 16 17 18
RMSE in m

0

10 3

10 2

10 1

100

Fa
ilu

re
 ra

te

AIRL
GAIL
BC
MS8
MS16

(a) Unseen situations in training roundabout

16 18 20 22 24 26
RMSE in m

0

10 3

10 2

10 1

100

Fa
ilu

re
 ra

te

AIRL
GAIL
BC
MS8
MS16

(b) Situations in untrained roundabout

Figure 7.4: Prediction RMSE and failure rate of 10 s-predictions by the best variant of each model
presented in this thesis. The performance is evaluated in situations that were not used for
training. Observe that the failure rate is displayed on a combined linear-logarithmic scale,
as the values vary by several orders of magnitude, and certain policies attain a failure rate
of 0.

Performance in Real-World Situations Figure 7.4 shows the performance of the models
in the two sets of unseen real-world situations, at the training roundabout and the unknown
roundabout. First, the performance at the training roundabout is examined. The failure rate of
the models varies by two orders of magnitude. The AIRL models exhibit the lowest failure
rate, with around 0.1% of the trajectories colliding or leaving the track. The GAIL models
have the second-lowest failure rate, with an average value around 1%. Then, the multi-step
models follow with failure rates around 2-3% and some outliers with higher failure rates.
Finally, single-step BC consistently displays failure rates around 10%. At the untrained
roundabout, the values are similar, with a notable increase of the failure rate to 20-30% by the
BC model.

Concerning the RMSE, the lowest values in the training roundabout are obtained by the
multi-step models, between 13 to 15 m. Then, the GAIL and BC models follow with 15
to 16 m. Finally, the AIRL models exhibit the highest RMSE with values around 17 m and
outliers to both sides.

Examining the RMSE on the untrained roundabout shows an interesting effect: The RMSE of
all models increases significantly, compared to the known map. This indicates that the models
have learned some nuances of driving behavior that are specific to the map, which boosts their
performance in the known map. This effect is the most pronounced for the multi-step models,
which now have similar RMSE values to GAIL and BC, around 16 to 18 m. Due to their goal
of directly imitating the driver behavior, the multi-step models are likely the most prone to
overfitting to map characteristics.

Especially concerning the ability to generalize, this comparison shows that the multi-step
and the BC models are dominated by the indirect GAIL and AIRL methods: GAIL achieves

170

7.2 QUANTITATIVE EVALUATION

AIRL GAIL BC MS8 MS16
10 3

10 2

10 1

100

Fa
ilu

re
 ra

te

(a) Fictional situations from Figure 6.12

AIRL GAIL BC MS8 MS16
10 3

10 2

10 1

100

Fa
ilu

re
 ra

te

(b) Untrained fictional situation from Figure 7.3

Figure 7.5: Failure rate of the policies in entirely different situations with critical initialization (up to
14 m/s speed difference with 10 m distance to the preceding vehicle), for 10 s-simulations

comparable RMSE values to MS and BC, but simultaneously has a significantly lower failure
rate. AIRL shows an even lower failure rate, which comes at the cost of a slightly increased
RMSE.

A possible explanation of this tradeoff between failure rate and RMSE is the following: As
the policy drives more carefully, it has a bias to give way in unclear right-of-way situations,
which slows down the overall progress in traffic situations, leading to the increased prediction
RMSE. One example of this effect is visible for vehicle #9 in Figures 7.1 and 7.2: Both GAIL
and AIRL wait for a large gap before entering the roundabout, whereas the ground-truth driver
and the multi-step models enter the roundabout less hesitantly. Empirically, adding the angle
between the heading of a conflicting vehicle and the merge point as an observation feature
of the policy significantly improves the traffic flow, as it enables agents to detect that other
vehicles are planning to leave the roundabout earlier. Real-world drivers can additionally
rely on turn signals to communicate and observe intentions of other vehicles earlier than the
kinematic state would allow. Thus, introducing additional means of communications between
the agents, such as turn signals, would be an interesting extension of the simulation.

Performance in Fictional Situations The fictional situations are initialized randomly with
different traffic densities, initial velocities ranging from 0 m/s to 14 m/s, and minimum
bumper-to-bumper distances between successive vehicles of 10 m. Similar to the initialization
during RL training, depicted on Figure C.2, some situations require an immediate strong
braking, whereas others feature smooth driving conditions on unobstructed roads. To ensure
comparability, the same 200 randomly initialized situations are used when comparing the
models. Similar to Section 7.1, a visualization of the predictions of the models on the two
fictional maps is shown in Appendix D.

Figure 7.5 shows the failure rate of the models on the two fictional maps. Overall, the failure
rate ranges from 0.2% to around 40%, with all models performing significantly worse than

171

7 COMPARISON OF ALL MODELS

in the previously evaluated real-world situations. Two causes explain the decline in model
performance: First, the policies are executed in situations which they have not been trained in.
Second, the situations are typically more crowded and initialized more critically than the real
world situations.

The first fictional situation in Figure 7.5a, which comprises multiple new traffic situations be-
sides a roundabout, is especially challenging. Except from AIRL, which has been confronted
with different situations on this map during training, all models show failure rates above
3%, up to 40%. Due to their training goal of directly imitating driver behavior, single- and
multi-step training perform the worst. This shows that GAIL, BC, and MS-training clearly
have difficulties to generalize to untrained road structures.

In the second fictional situation in Figure 7.5b, the GAIL and MS models have a lower
collision rate, as the simulation takes place in a roundabout scenario. Still, with failure
rates around 6-8%, single- and multi-step training have difficulties in plausibly predicting
the situation. Due to the indirect training with the additional goal of avoiding collisions or
leaving the track, GAIL achieves lower failure rates around 3%. AIRL, which is additionally
confronted with fictional critical situations during training, further lowers the failure rate to
an average of 1%.

7.3 Training- and Runtime

A comparison of the training duration until a good policy is found is interesting to shed light
on the potential of the methods to scale to larger datasets. As the number of training epochs
has different meanings for the different methods, it is not stated here. All runtimes are stated
for a training on the same training dataset used throughout this work.

Given a pre-processed dataset of observations and reconstructed actions, the single-step model
is the fastest model to train. As the dataset is comparatively small and the learning task is a
standard supervised learning task that can be parallelized over the whole dataset, the training
takes approximately 5 minutes on an NVIDIA RTX 2060.

Multi-step training takes significantly longer, as it needs to perform the backpropagation
not only through a highly efficiently implemented off-the-shelf neural network, but also
through the manually implemented simulation, as laid out in Section 4.2.1. Training each
multi-step model takes approximately 1 h on the dataset. As training the 16 s-model starts
with a trained 8 s-model, which is based on the final 4 s-model, and so on, training of the
8 s-model effectively takes 4 h and training the 16 s-model takes 5 h. In contrast to single-step
training, the ability to parallelize the training is reduced, meaning that there is no benefit
of executing the training on a GPU. Instead, the training is executed on a single core of an
i7-9700 CPU @3 GHz.

172

7.3 TRAINING- AND RUNTIME

IRL training does not require a differentiable simulation environment, which entails a faster
forward simulation than multi-step training. On the other hand, there is no direct gradient in-
formation on how to improve the model. Rather, the policy gradient needs to be approximated
stochastically by executing randomly sampled actions and assessing their consequences in
terms of the obtained reward. Despite the notion that an analytic gradient computation, as
performed during multi-step training, should overall be faster than a stochastic approximation
thereof, the IRL methods require less training time: Training exclusively on the training
dataset takes approximately 45 min, and the additional training in fictional situations increases
the training time to 1 h.

Besides the methodological differences between the approaches, one possible explanation
on why the stochastic gradient approximation by policy gradient methods is more successful
than the exact analytic gradient computation is proposed in [Met+22]. The authors investigate
failure modes of gradient based optimization in chaotic systems. One characteristic of chaotic
systems is extreme sensitivity of the final outcome to initial conditions. While the experiments
in this chapter show that traffic is generally well predictable for a few seconds, it sometimes
exhibits strong sensitivity on certain states. For example, in an unclear right-of-way situation,
a slightly larger velocity of one vehicle can be decisive on the evolution of the situation.
Further, the evolution of the situation is non-deterministic and depends on the individual
drivers. While an analytic gradient computation is possible in such a situation, it provides
only the appearance of precision, as the gradient could be completely different when the
initial situation is slightly changed. Metz et al. [Met+22] argue that a stochastic gradient
approximation can be more robust and hence provide a better training signal in these cases.
This also explains why multi-step training cannot be directly trained, but requires tweaks such
as using pre-trained models and the Huber loss to achieve stable training performance.

When executing the learned models to simulate or predict a traffic situation, all approaches
have an identical runtime. This is because the only difference is the weights of the policy neural
network, regardless of the method that was used for its training. As described in Section 3.4,
many optimizations are applied to maximize the simulation speed. Most importantly, the
simulation of the traffic situation is implemented in a vectorized fashion, such that multiple
situations can be simulated efficiently in parallel. This is important for fast training times for
the multi-step and IRL models. For example, simulating 100 10 s-situations in parallel with a
total of 1250 vehicles takes 4.5 s on a single core of an i7-9700 CPU. However, the focus of the
implementation lies on fast parallel execution to quickly acquire experiences from multiple
independent simulations. The implementation is not designed for simulating a single situation
efficiently, such that it takes approximately 800 ms to predict a single 10 s-situation with 25
vehicles. This is clearly too much for predicting the environment of an automated vehicle in
real time. On the other hand, only 10 ms of this are used for the execution of the policy neural
network, whereas the remainder of the time is mainly spent for computing transformations
between Cartesian and Frenet coordinates, determining the relation between vehicles, and

173

7 COMPARISON OF ALL MODELS

computing the components of the observation vector. A more efficient implementation of
the simulation in a compiled language such as C++ instead of Python could conceivably
significantly reduce the computation time.

7.4 Conditional Prediction

One important motivation behind this work is the ability to make conditional predictions.
In the planning system of an automated vehicle, such predictions are useful for cooperative
behavior planning: By conditioning the prediction of the situation on a planned ego trajectory,
the automated vehicle could assess the effect of its plan not only on itself, but also on the
predicted trajectories of the surrounding vehicles.

As an investigation of cooperative behavior planning is beyond the scope of this work, this
section only shows a proof-of-concept of the idea of conditional prediction: In a situation
where a vehicle could enter a roundabout, one prediction of the situation is issued for the case
that it regularly enters the roundabout, and another prediction is issued for the case that the
vehicle stops at the stop line. Similarly, the behavior planner of an automated vehicle could
receive multiple future predictions by querying the prediction model with different planned
trajectories for itself.

The resulting predictions are depicted in Figure 7.6. The original prediction in Figure 7.6a
is generated by executing one AIRL policy for all vehicles. Any other policy could have
been used for this purpose. To simulate the conditioning on an alternative future trajectory
of vehicle #12, where it does not enter the roundabout, the same simulation is repeated with
all vehicles controlled by the AIRL policy, except for #12, whose acceleration actions are
simply replaced with a constant strong braking. The resulting conditional prediction is shown
in Figure 7.6b. Except for #12 and its succeeding vehicles coming from north, the prediction
of all other vehicles remains similar for about 3 s. Then, the predictions start to diverge: If
#12 does not enter the roundabout, a gap for the vehicles coming from west emerges, such
that they can enter significantly earlier. Also, #13 is predicted to drive slightly slower when
#12 enters the roundabout before it. Many other vehicles remain largely unaffected by the
actions of #12: The final position of #8, #9, #11, #18, #20, #22, #23 #24 after 10 s is almost
identical.

For reference, the ground truth evolution of the situation is shown in Figure 7.6c. There,
#12 indeed enters the roundabout, and the situation evolves similar to the prediction for
approximately 5 s.

174

7.4 CONDITIONAL PREDICTION

1

2

3

4

5 6

7

8
9

10

11

12

131415

16

17

18

19
21

23

2

3

4

5
6

7

8
9

10

11

12
131415

16

17

18

19

20

21

23

2

3

5

6

7

8
9

10

11

12 13
1415

16

17

18

19

20

21

23

25

3

5

6

7

8
910

11

12
13

1415

16
17

18

19

20

21

22

23

25

3

5

8
9

1011

12

13
1415

16
17

18

19

20

21

22

23

24

25
3

5
8

9

10

11
12

13

1415
1617

18

19

20

21

22

23

24

25
3

5 8
9

10

1112

13

1415 16
17

18

19

20

21

22

23

24

25

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5 8 9

11

12

13

1415
16

17

18

19

20

21

22
23

24

25
9.8 s

(a) What if #12 enters the roundabout at the next opportunity?

1

2

3

4

5 6

7

8
9

10

11

12

131415

16

17

18

19
21

23

2

3

4

5
6

7

8
9

10

11

12
131415

16

17

18

19

20

21

23

2

3

5

6

7

8
9

10

11

12
13

1415

16

17

18

19

20

21

23

25

3

5

6

7

8
910

11

12
13

14
15

16

17

18

19

20

21

22

23

25

3

5

8
9

10 11

12
13

14
15

16

17

18

19

20

21

22

23

24

25

3

5
8

9

10

11

1213

14

15

16

17

18

19

20

21

22

23

24

25 3

5 8

9

10

11

12
13

14

15

16

17
18

19

20

21

22

23

24

25

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5 8
9

11

12

13

14

15

16

17 18

19

20

21

22
23

24

25
9.8 s

(b) What if #12 does not enter the roundabout?

1

2

3

4

5 6

7

8
9

10

11

12

131415

16

17

18

19
21

23

2

3

4

5

6

7

8
9

10

11

12
131415

16

17

18

19

20

21

23

2

3

5

6

7

8

9

10

11

12 13
1415

16

17

18

19

20

21

23

25

3

5

7

8

9

10

11

12
13

1415

16
17

18

19

20

21

23

25

26

3

5
8

910
11

12

13
1415

16
17

18

19

20

21

22

23

25

26

3

5
8

9

10
11

12

13
1415

16
17

18

19

20

21

22

23

25

26

3

5 8

9

10

1112

13

14
15

16
17

18

19

20

21

22

23

24

25

26

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

5 8

9

11

12

13

14
15

16
17 18

19

20

21

22

23

24

25

26

29

9.8 s

(c) Ground truth evolution of the traffic situation

Figure 7.6: Demonstration of a conditional prediction
175

7 COMPARISON OF ALL MODELS

7.5 Conclusion

This chapter compares the prediction performance of the best variants of the proposed
approaches to learning a policy. Between the approaches, only the training differs, whereas
the execution is always the same: For the prediction of a traffic situation, all policies are
executed in the same simulation structure, described in Chapter 3. Hence, the runtime of all
approaches is identical. Also, due to the simulation-based architecture, every approach is
capable of issuing conditional predictions, as outlined in Section 7.4.

All methods successfully handle untrained situations in the training roundabout, but single-
and multi-step training struggle to plausibly control vehicles in the fictional situations. In
the training roundabout, single-step training exhibits the highest failure rate around 10%. As
expected, multi-step training improves the failure rate and the prediction RMSE, which can
be explained by the model being more robust to causal confusion and distributional shift, as
discussed in Chapter 4.

The IRL based methods GAIL and AIRL do not directly try to imitate the ground truth
trajectories, but rather follow an indirect approach—by reconstructing the reward function
and finding a policy that maximizes this reward. In the training roundabout, this indirect
approach leads to an increased prediction RMSE, but it allows reducing the failure rate by
a manually specified secondary goal of avoiding collisions or driving off the track. In the
untrained roundabout, the better accuracy of the multi-step models compared to the IRL based
models vanishes, which indicates that the direct multi-step models have learned a policy that
is over-adapted to the training roundabout. Moreover, in the two fictional situations, the IRL
based methods demonstrate the lowest failure rates.

Overall, it can be concluded that the indirect IRL methods are superior to direct single- or
multi-step training. In situations that are different from the training situation, GAIL exhibits
lower failure rates at equal accuracy, and AIRL shows even lower failure rates at a slightly
decreased accuracy. Moreover, the training time of the IRL methods is significantly lower
and AIRL provides means to extend the training to fictional situations for which no training
data exists.

176

8 Conclusion

An automated vehicle should drive safely and comfortably. For this, it needs to make plans on
how to act in the next seconds. To make these plans, a model of how the environment around
the automated vehicle evolves is required. Specifically, it is of interest how the surrounding
vehicles will act in the near future. For this reason, this work is concerned with predicting
their trajectories.

8.1 Summary

In contrast to many other recent publications in trajectory prediction surveyed in Section 2.4,
this work generates trajectory predictions by executing a driver behavior model for each
vehicle in a microscopic simulation of the current traffic situation, described in Chapter 3.
This approach has multiple advantages, the central ones are:

• It naturally enables the predictions to interact with each other: The simulated vehicles
observe each other in the simulation, such that complex traffic patterns can be pre-
dicted. For example, as illustrated in Section 7.2, vehicles are predicted to wait at the
roundabout entry until a sufficiently large gap emerges between two other predicted
vehicles.

• It enables the prediction model to issue conditional predictions, as demonstrated in
Section 7.4. This can be used to answer questions such as “How would the situation
evolve if the automated vehicle enters the roundabout? How would it evolve if the
automated vehicle stops at the roundabout entry?”

• At its core, the learned model controls a kinematic vehicle model. Hence, the predictions
are guaranteed to be physically plausible. Also, the prediction is not merely a sequence
of future positions, but rather the full vehicle state, including the velocity, acceleration
and heading of other vehicles. Combined with the conditional prediction, this can be
used to assess the impact that the plan of an automated vehicle has on others, e.g.,
“How strong does another vehicle need to brake if the automated vehicle enters the
roundabout ahead of it?”

As lined out in Section 2.1.1, these properties of the prediction pave the way for implementing
a cooperative behavior planner for an automated vehicle: The behavior planner could compare
the influence of different future ego trajectories on other vehicles and select the trajectory that
is optimal not only for itself, but also for others. Moreover, as lined out in Section 2.1.2, the
driver behavior models cannot only be employed for predicting traffic situations, but also for a

177

8 CONCLUSION

realistic traffic simulation to test the performance of the cognition component of an automated
vehicle.

Despite these advantages, one major drawback has hindered progress in the class of simulation-
based prediction models: There is no straightforward way to learning a driving policy that
generates accurate and plausible long-term predictions when executed by all vehicles in
the simulation. This is the central motivation of this thesis, which investigates different
approaches to learning a driving policy. In the simulation framework described in Chapter 3,
the policy is the component that controls the behavior of a vehicle: It determines which
action (acceleration, steering) a vehicle selects, based on a simulated observation of its local
environment. The key contributions that this thesis makes towards learning a driving policy
are emphasized with bold letters in the following.

The baseline approach, single-step Behavioral Cloning, works by generating a dataset of
simulated observations and reconstructed actions of vehicles from an original dataset of
recorded trajectories. Then, a neural network is employed to establish the relation between
observations and actions. Details are described in Section 4.1. While this is seemingly a
straightforward solution to learning a policy, the central problem of single-step training is that
it does not learn a causal model of the relation between observations and actions, and that
it suffers from distributional shift: When the learned policy is executed in the simulation, it
is prone to slowly drifting out of the domain of observations in the training dataset. As the
learned policy is only capable of selecting appropriate actions in situations that are similar
to the training situation, this leads to an inherent instability of the model, as discussed and
supported by multiple sources in Section 4.1.3.

This motivates the proposal of multi-step training in Section 4.2. Instead of only predicting
the next action, the idea is to execute the policy in the simulation during training, and to
use the deviation between the predicted and the real trajectory as the training loss that shall
be minimized. The loss is minimized by following its gradient with respect to the policy
parameters. To compute this gradient, a differentiable simulation environment is required,
where the output of each component—observation, policy and kinematic model—can be
differentiated with respect to its inputs. During multi-step training, the policy experiences the
consequences of its actions on subsequent observations and learns to compensate for them.
The experiments in Section 4.3.3 and Chapter 7 show that this leads to a decreased prediction
RMSE and to an improved ability of the policy to remain on the track and to avoid collisions,
compared to single-step training.

However, even the best multi-step models exhibit failure rates around 2-3%. Moreover, as
their training goal is the direct imitation of the trajectories from the training dataset, all
Behavioral Cloning approaches can only be trained in situations for which training data exist.
This idea leads to the exploration of an entirely different class of algorithms to obtain a driving
policy, namely Reinforcement Learning. Hereby, the same simulation environment as before

178

8.1 SUMMARY

is used. However, the goal is now to find a policy that maximizes a manually specified reward
function. This happens entirely in simulated traffic situations and requires no real world
training data.

At its core, the employed PPO algorithm to find an optimal policy operates by randomly
selecting different sequences of actions, evaluating the obtained rewards, and increasing the
chance of selecting actions that lead to high rewards, compared to those that lead to low
rewards. Iteratively, this leads to a policy that obtains increasingly larger rewards. As most RL
algorithms target single-agent scenarios, Chapter 5 describes the necessary adaptions to apply
RL to multi-agent roundabout traffic situations. Also, a new reward function is derived
under which a vehicle needs to maintain a specified lateral acceleration in curves to maximize
its reward. It is demonstrated that the learned policy indeed acts close to this theoretical
reward-maximizing optimum, confirming the effectiveness of the learning algorithm. For the
multi-agent case, the reward function is extended to reflect cooperative driving behavior and
the observance of right-of-way rules.

Furthermore, a method for learning a heterogeneous policy that can represent different
behaviors is proposed. Depending on three special preference inputs, the policy can be
changed on the fly, for example to drive faster or slower through curves, or to maintain larger
or smaller safety distances to other vehicles. The motivation behind this is to capture the
heterogeneity of real world driver behavior, which a single fixed policy cannot represent.

However, when RL is employed to learn a policy that resembles the behavior of human
drivers, the reward function must accurately model the goals of human drivers, as well as
their relative weights. This reward function is generally unknown and hard to model manually.
As an alternative, this work investigates two algorithms, GAIL and AIRL, to effectively
automate the search for the reward function. The algorithms operate in an adversarial learning
framework, described in Chapter 6, where a second neural network denoted as discriminator
has the task of distinguishing between real trajectories and trajectories generated by the policy.
Concurrently to training the discriminator, the policy is trained using the PPO algorithm
with the goal of maximizing the “realness” score assigned by the discriminator. This can
be interpreted as a game between discriminator and policy: As the discriminator learns to
identify the real trajectories more confidently, it simultaneously provides a stronger training
signal to the policy, which in turn learns to generate more realistic appearing trajectories.

This thesis proposes adaptions of GAIL and AIRL for the multi-agent setting, because the
original algorithms are designed for the single-agent setting. For this, the parameter-sharing
idea from the RL chapter is revisited. AIRL is used to reconstruct the reward function, and
a visualization of the learned function is provided, demonstrating that it has an interpretable
meaning: Progress along the track is rewarded, whereas lateral and longitudinal accelerations
are penalized approximately quadratically.

179

8 CONCLUSION

The indirect IRL approach of simultaneously reconstructing a reward function and training
the policy to maximize it has multiple advantages over trying to directly imitate the driver
behavior, as multi-step training does: Additional rewards can be manually specified, such as
the goal to avoid collisions and to remain on the track. As a consequence, the learned GAIL
policies achieves the same accuracy as the best multi-step policies while exhibiting a lower
collision rate. Moreover, the reconstructed reward can be used to train in arbitrary simulated
situations, for which no training data exists. This is exploited during the AIRL training to
additionally train in fictional critical situations, where the policy is forced to immediately
brake strongly to avoid a collision. With this, AIRL further reduces the collision rate at the
cost of a slightly decreased accuracy, compared to GAIL.

Ultimately, Chapter 7 contains an extensive comparison of all models, trained and evaluated
on the same datasets. The evaluation shows that the policies obtained with GAIL and AIRL
exhibit the best prediction performance in terms of accuracy, plausibility, and ability to
generalize to new situations.

8.2 Limitations and Future Work

Intention Prediction This work is exclusively concerned with behavior modeling via a
driving policy. All presented approaches assume that the route intention of the predicted
vehicles is known in advance, e.g., whether a vehicle will leave a roundabout at the next exit.
To truly predict the future trajectories of other vehicles, their intention needs to be predicted as
well. This could be realized by using a separate intention detection mechanism, as proposed
in [Sac+20a; Vog+20], which is not covered in this work.

In unclear cases, multiple trajectory predictions would need to be issued to cover all options.
As the models proposed in this work are interacting in a consistent world, each branching of
options of a vehicle would create additional predicted situations, e.g., one where the vehicle
leaves the roundabout and one where it does not. This leads to a combinatorial growth of the
number of situations that need to be predicted to cover all options of all vehicles. Pruning
these options to predict only the relevant ones from the perspective of an automated vehicle is
an important step for making the models applicable. Many promising ideas concerning this
problem are presented in [Sch21].

Heterogeneity of Agents In Section 5.5, a RL-based method to learn a policy that can
exhibit different driving characteristics is proposed. By letting the policy observe some
features of its reward function, e.g., the minimum allowed time gap to the preceding vehicle
before a penalty is assigned, the policy learns to adhere to these preferences. An interesting
direction for future research is the combination of this idea with IRL-based approaches to learn
a flexible policy that exhibits different realistic behaviors, depending on specific preference

180

8.2 LIMITATIONS AND FUTURE WORK

inputs. These preferences could also be estimated on-line to issue driver-specific predictions
after observing the past driver behavior. Another interesting future research direction is to
learn policies for the interaction between completely heterogeneous agent classes, such as
cars, trucks, pedestrians and cyclists.

Handling Uncertainty Behavior planning can benefit from a representation of the uncer-
tainty of the prediction. As discussed in Section 2.5, no surveyed approach is capable of
emitting the closed form density of all vehicle states at all future time steps. The reason is
that no simple density exists that captures the complex interaction between successive and
interacting states of different vehicles. Instead, it is more straightforward to issue multiple
representative predictions of the potential evolution of the traffic situation. To generate a
diverse set of predictions, ideas from the previous two paragraphs can be leveraged: The pre-
dictions need to cover all potential future routes. Along a route, multiple realistic trajectories
could be predicted by sampling from a low-dimensional preference space to represent the
potential heterogeneity of driving behavior. Effectively, this transforms random samples from
a relatively low-dimensional space (preferences, route intentions of all agents) to samples
in the high-dimensional space of the interacting future states of all vehicles in the traffic
situation.

Graph-based Environment Representation The policies proposed in this work operate on
a hand-defined observation vector described in Section 3.2. While it has been demonstrated
that this enables the different algorithms to learn policies that successfully handle roundabout
situations and gives insight into their functioning, it has the disadvantage that it is restricted to
situations that can sensibly be described with this representation. For example, in a subsequent
work for predictions on a highway [Rad+23], a different observation vector is required, which
also means that a new policy needs to be trained. A more flexible input representation could
be realized using graph neural networks that can process arbitrary map layouts and a varying
number of surrounding vehicles. In recent years, GNNs have been successfully employed for
supervised learning style vehicle trajectory prediction, for example in [Gao+20; Lia+20]. A
combination with policy-based prediction approaches is an interesting direction for future
research. A first step in this direction is made in the associated publication [Kon+23], where
a RL policy is trained with a graph-based observation of the environment.

Planning by Prediction Another promising future research direction is to use the learned
policy to boost sampling-based behavior planning algorithms such as on-line POMDP solvers,
for example employed in [Hub+18; Bey+21b]. As demonstrated in Chapter 5, RL is capable
of learning a policy that exhibits behavior that is close to the optimal behavior. However, while
it maximizes the expected mean return, is does not rule out rare worst-case scenarios, such as

181

8 CONCLUSION

collisions. These occur throughout all examined RL and IRL approaches for at least 0.1%
of all trajectories. Guiding the search of a sampling-based behavior planner with the actions
predicted by the policy would perform at least as good as directly following the policy, but
can search for better trajectories on-line, for example to avoid collisions or to further increase
the obtained reward. Tree-search based behavior planning, on the other hand, would benefit
from this combination, because the policy could guide its search towards selecting promising
actions, thereby reducing the number of trajectories that are evaluated, or increasing the search
depth of the planner. A combination of these methods has been demonstrated in [Sil+17] for
the board game Go, and could likely be transferred to the domain of automated driving with
methods that handle continuous observations and actions, similar to those presented in this
thesis.

Scaling Finally, as for all data-based approaches, it would be interesting to investigate how
the proposed methods scale to larger datasets that encompass a wider variety of situations.
Also, for a large-scale application of the methods, it is important to investigate on-line learning
systems that improve their predictions over time, as new data is continuously collected by a
fleet of vehicles.

182

A Evaluation of the Dataset Accuracy

To evaluate the accuracy of the DFS dataset, a test vehicle equipped with a highly precise
iTraceRT-F4001 localization unit that estimates the vehicle state via a deeply coupled Inertial
Navigation System (INS) and Global Navigation Satellite System (GNSS) is used. The test
vehicle stores the iTrace state estimates and is simultaneously recorded in the drone video.
The video is subsequently processed by the DFS pipeline. As the errors of the iTrace are
expected to be an order of magnitude smaller than the errors of the DFS pipeline, the iTrace
is assumed to be the ground truth.

To compare the two measurements, the original iTrace measurement is downsampled to
29.97 Hz, the frequency of the video recording, using linear interpolation. Then, a temporal
synchronization

i∗ = argmin
i

∑
k

(vgt[k]−vdfs[k+ i])2 (A.1)

of the two measurements is performed via the time-discrete speed signals from the iTrace
vgt[k] and from the DFS data vdfs[k]. For all further evaluations, all DFS signals are shifted
by i∗, where the RMSE between the two speed signals is minimal. The aligned signals are
depicted in Figure A.1 and show that the temporal alignment was successful. The vehicle is
not permanently visible from the drone, which explains the gaps in the DFS signal.

Speed The DFS speed fits well with the iTrace measurement, except for approximately
1.5 s after the vehicle enters or leaves the field of view of the drone. This can probably be
attributed to an initialization error of the DFS tracking pipeline. Therefore, the first and last
1.5 s of each trajectory are excluded from the dataset.

For the remaining parts of the trajectory, the average speed provided by DFS is 0.027 m/s
higher than the iTrace speed with a standard deviation of 0.114 m/s. The error histogram is
shown in Figure A.2a. The relative errors (vgt−vdfs)/vgt are typically below 2.5%, excluding
velocities below 1 m/s. These results are in line with [Bar+19], who also evaluate the speed
estimate of the DFS pipeline and state that the speed error does not exceed 1.2km/h =
0.33m/s when the drone footage is properly calibrated and stabilized. Interestingly, the
velocity error is competitive with state-of-the-art object tracking methods of surrounding
vehicles. For a LiDAR based system, [Krä21, p. 129] reports a standard deviation of
0.43km/h = 0.119m/s for the velocity error of the best tracking model and sensor. For a

1Datasheet available at https://www.imar-navigation.de/downloads/TraceRT-F400-E_
en.pdf; accessed July 4, 2022

183

https://www.imar-navigation.de/downloads/TraceRT-F400-E_en.pdf
https://www.imar-navigation.de/downloads/TraceRT-F400-E_en.pdf

A EVALUATION OF THE DATASET ACCURACY

0 50 100 150 200 250 300 350 400 450
0

5

10

15

Time in s

V
el

oc
ity

in
m

/s

iTrace
DFS

Figure A.1: Time-aligned speed signals of the test vehicle from iTrace and DataFromSky pipeline

−0.4 −0.2 0 0.2
0

200

400
µ = -0.027 m/s
σ = 0.114 m/s
N = 4687

(a) Velocity Error in m/s

N
um

be
ro

fO
cc

ur
en

ce
s

−1 −0.5 0 0.5 1 1.5
0

200

400

600 µ = -0.04 m/s2

σ = 0.26 m/s2

N = 4687

(b) Acceleration Error in m/s2

Figure A.2: Error Histograms of vgt−vdfs and agt−adfs

radar based system, [Sch19, p. 111] reports a RMSE2 of 0.17 m/s for the best model and
scenario.

Acceleration As the DFS pipeline needs to reconstruct the acceleration from positional
observations in the video as a second order derivative, errors are to be expected. On average,
the acceleration provided by DFS is 0.04 m/s2 larger than the ground truth, with a standard
deviation of σ = 0.26m/s2. The error histogram is provided in Figure A.2b. The relative
errors are not informative in this case, because the longitudinal acceleration is often close to
0 m/s2 during regular driving.

2While the RMSE cannot directly be compared to the standard deviation, the RMSE of the DFS velocity is
approximately 0.117 m/s. See Appendix B.1 for details.

184

Positional Error Both, the DFS and iTrace positions, are provided in a world-fixed cartesian
coordinate frame. However, as the coordinate frame of the drone videos is not earth-fixed,
the frames are not aligned. Thus, the translation and rotation between the frames needs to be
determined first. The temporal alignment (A.1) via the velocities is maintained unchanged.

To facilitate the ensuing alignment procedure, the positions of both, the iTrace and DFS
trajectory, are shifted

(x̃gt, ỹgt) = (xgt− x̄gt,ygt− ȳgt) (A.2)

(x̃dfs, ỹdfs) = (xdfs− x̄dfs,ydfs− ȳdfs) (A.3)

such that the respective mean trajectory position (x̄, ȳ) is the origin of a new coordinate
frame. Both, the iTrace trajectory mean and the DFS trajectory mean are calculated for the
synchronized time steps where the vehicle is visible in the drone video.

Next, the DFS coordinate system is translated and rotated according to

(ϕ∗,x∗
off,y

∗
off) = argmin

ϕ,xoff,yoff

∑
k

∥∥∥∥∥∥
x̃gt[k]
ỹgt[k]

−Rϕ
x̃dfs[k]+xoff

ỹdfs[k]+yoff

∥∥∥∥∥∥
2

(A.4)

with the rotation matrix

Rϕ =
cosϕ −sinϕ

sinϕ cosϕ

 (A.5)

such that the RMSE between the two trajectories is minimal with respect to the rotation angle
ϕ∗ and translation (x∗

off,y
∗
off). As this optimization needs to be performed only once, it is

implemented using a simple grid search. The aligned trajectories are shown in Figure A.3a.

Now, the statistics of the displacement error can be computed, which characterizes the re-
maining mismatch between the aligned trajectories. The mismatch is the result of localization
errors of the vehicle detection mechanism in the DFS pipeline, and of intrinsic and extrinsic
camera calibration errors. The intrinsic calibration errors occur for example due to incorrect
lens distortion correction, and the extrinsic calibration errors are a result of the drone hovering
not entirely stable in the air, for example due to wind. The DFS pipeline addresses each of
these phenomena [Ape+15], but cannot entirely compensate them.

The displacement between the positions obtained via iTrace and the complete DFS pipeline is
shown in the cumulative displacement histogram in Figure A.3b. It shows that the displace-
ment error is below 0.25 m in 50% of all measurements, and below 0.6 m in 95% of all cases.
The average displacement error is 0.25 m.

185

A EVALUATION OF THE DATASET ACCURACY

-50 0 50

-50

-25

0

25

50 iTrace

DFS

(a) Aligned trajectories

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N = 4687

Displacement in m

(b) Cumulative displacement histogram

Figure A.3: Trajectories after alignment

A.1 Dataset Statistics

Figures A.4 to A.7 show the distribution of the observation features listed in Table 3.1.
Figure A.8 shows the distribution of the acceleration and steering action. Before processing
the features with a neural network, these statistics are used to standardize the features such that
each feature has a mean of 0 and a standard deviation of 1. To avoid leaking any information
from the test dataset, the mean and standard deviation value of each feature is exclusively
computed on the training and validation dataset. For this reason, the histograms show the
distribution of the data in these two datasets.

Not all features are available at all timesteps. For example, not all vehicles have a preceding
vehicle or the preceding vehicle is out of range. The value is then replaced with the default
or maximum value from Table 3.1. These cases are excluded from the histograms for better
visibility. The mean and standard deviation are computed on the full dataset, including the
imputed values. For this reason, the approximate mean of the histograms and the value listed
in Table 3.1 might differ. Some features can assume slightly negative values: The distance to
the preceding vehicle sometimes is negative due to misdetections in the dataset. The distances
to the yield or merge point become negative, because they are measured from the vehicle
front and computed until the vehicle center has passed the respective point.

Some features require more explanation. The distance to the preceding vehicle in Figure A.6
occasionally assumes values below 0 due to displaced detections or wrong vehicle shapes
estimates in the drone recording. The distance to the yield point, also in Figure A.6, is
clipped when the vehicle center is behind the yield line. As the distance is calculated from the
vehicle front, it can become slightly negative. The same applies to the distance of the closest
conflicting vehicle to the yield point. The angle of the closest conflicting vehicle to the merge

186

A.1 DATASET STATISTICS

point shows two clear clusters that can be used to differentiate whether a vehicle will leave
the roundabout at the next exit.

187

A EVALUATION OF THE DATASET ACCURACY

0 5 10 15 20
Velocity in m/s

0

1000

2000

3000

4000

0 1 2 3 4 5
Distance to left boundary in m

0

1000

2000

3000

4000

5000

0 1 2 3 4 5
Distance to right boundary in m

0

1000

2000

3000

4000

5000

6000

0.6 0.4 0.2 0.0 0.2 0.4
Current heading angle to lane in rad

0

2500

5000

7500

10000

12500

15000

0.75 0.50 0.25 0.00 0.25 0.50
Heading angle to lane 5 m ahead in rad

0

2000

4000

6000

8000

0.8 0.6 0.4 0.2 0.0 0.2 0.4
Heading angle to lane 10 m ahead in rad

0

2000

4000

6000

8000

N=71863 N=71863

N=71863 N=71863

N=71863 N=71863

Figure A.4: Histograms of observation features in the training dataset

188

A.1 DATASET STATISTICS

0.75 0.50 0.25 0.00 0.25 0.50
Heading angle to lane 20 m ahead in rad

0

2000

4000

6000

8000

0.1 0.0 0.1
Current curvature in 1/m

0

5000

10000

15000

20000

0.2 0.1 0.0 0.1
Curvature 5 m ahead in 1/m

0

5000

10000

15000

20000

0.2 0.1 0.0 0.1
Curvature 10 m ahead in 1/m

0

2500

5000

7500

10000

12500

15000

17500

0.15 0.10 0.05 0.00 0.05 0.10
Curvature 20 m ahead in 1/m

0

2500

5000

7500

10000

12500

15000

0 5 10 15 20
Velocity of preceding vehicle in m/s

0

1000

2000

3000

4000

N=71863 N=71863

N=71863 N=71863

N=71863 N=52083

Figure A.5: Histograms of observation features in the training dataset

189

A EVALUATION OF THE DATASET ACCURACY

0 5 10 15 20 25
Distance to preceding vehicle in m

0

250

500

750

1000

1250

1500

0 10 20 30
Distance to yield point in m

0

200

400

600

800

1000

1200

2 4 6 8 10
Velocity of closest conflicting vehicle in m/s

0

500

1000

1500

2000

2500

0 10 20 30 40
Dist. of ccv. to yield point in m

0

200

400

600

800

1000

0.0 0.5 1.0 1.5
Angle of ccv. to merge point in rad

0

250

500

750

1000

1250

1500

2.5 5.0 7.5 10.0 12.5
Velocity of second ccv. in m/s

0

200

400

600

800

1000

1200

N=40728 N=25406

N=24987 N=24541

N=24258 N=9981

Figure A.6: Histograms of observation features in the training dataset

190

A.1 DATASET STATISTICS

10 20 30 40
Distance of second ccv. to yield in m

0

100

200

300

400

0 10 20 30 40
Distance to next merge point in m

0

50

100

150

200

250

300

350

10 0 10 20 30 40
Dist. of closest non-priority vehicle to merge point in m

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15
Vel. of closest non-priority vehicle in m/s

0

1000

2000

3000

4000

N=9431 N=12384

N=24368 N=26717

Figure A.7: Histograms of observation features in the training dataset

15 10 5 0 5
Action: Acceleration in m/s²

0

2000

4000

6000

8000

10000

12000

14000 N=71863

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Action: Steering angle in rad

0

2500

5000

7500

10000

12500

15000

17500 N=71863

Figure A.8: Histograms of the actions in the training dataset

191

B Mathematical Supplements

B.1 Mean Error, Standard Deviation and RMSE

Publications in the field of prediction often specify errors as RMSE values or via their
empirical mean and standard deviation. To facilitate the comparison, the relation between
both representations is laid out here. Let

e= x− x̂ (B.1)

be the error, i.e., the difference between a predicted value x̂ and the true value x.

The mean error of N measurements is defined as

µe =
∑N
k=1 ek
N

. (B.2)

The empirical standard deviation can be computed according to

σe =
√∑N

k=1(ek−µe)2

N
. (B.3)

The RMSER is defined as

R=
√∑N

k=1 e
2
k

N
. (B.4)

The empirical standard deviation is a lower limit of the RMSE, because

σ2
e = (

N∑
k=1

(ek−µe)2)/N (B.5)

= (
N∑
k=1

e2
k−2ekµe+µ2

e)/N (B.6)

= R2−µ2
e. (B.7)

Thus, the RMSE can be calculated from the mean and standard deviation according to

R=
√
µ2
e +σ2

e , (B.8)

193

B MATHEMATICAL SUPPLEMENTS

and it is equal to the standard deviation if the mean error µe is 0.

B.2 The Squashed Gaussian Distribution

A random variable Y that is distributed according to the squashed Gaussian distribution is
obtained by sampling from a Gaussian distributed random variable X, and then applying the
tanh function.

X∼N (µ,σ)
Y = tanh(X)

In many RL implementations [Lia+18; Raf+21] with continuous action spaces, this distri-
bution is employed to ensure that the realizations of a continuous action Y are bounded to
[−1,1]. To cover the designated action boundaries, the distribution must then be shifted and
scaled accordingly.

As tanh is a strictly monotonic and the inverse tanh−1 is defined on (−1,1), the probability
distribution function can be computed according to [BT08, p. 207]

fY(y) = fX(tanh−1(y))
∣∣∣∣∣dtanh−1(y)

dy

∣∣∣∣∣ . (B.9)

With this, the probability distribution function of Y is

fY(y) =


1√

2πσ(1−y2)e
− (tanh−1(y)−µ)2

2σ2 if −1< y < 1,

0 otherwise.
(B.10)

The resulting distribution function is shown in Figure B.1 for different parameter values.
For σ≫ 1, most of the probability mass accumulates around +1 and −1. For σ ≈ 1, the
distribution is approximately uniform on (−1,1). For σ≪ 1, the probability mass accumulates
close to tanh(µ).

B.3 Maximum Entropy Distribution

Jaynes [Jay57] shows how the principle of maximum entropy can be used to derive the
probability of a system being in a specific state, depending on the energy of the state. The
derivations from [Jay57] are slightly adapted in the following for deriving the probability of
being in a state, depending on the reward of being in that state. This derivation forms the
backbone of maximum entropy IRL [Zie+08] and works that build upon it, such as AIRL
[FLL18].

194

B.3 MAXIMUM ENTROPY DISTRIBUTION

1.0 0.5 0.0 0.5 1.0
y

0

1

2

3
f Y

(y
)

= 0, = 1
= 0, = 0.8
= 0, = 0.3
= 0.2, = 0.125
= 1, = 0.3
= 0.0, = 5.0

Figure B.1: The squashed Gaussian distribution for different values of µ and σ

Let a system that can assume N discrete states (x1,x2, . . . ,xN) with unknown probabilities
pi = p(x = xi) have an expected reward of

E{R(x)}=
N∑
i=1

piR(xi). (B.11)

Given no further information, what is the distribution of p = (p1,p2, . . . ,pN)? There are
infinitely many solutions to this question, as this amounts to an under-determined system of
equations. For example, if there is one state xj withR(xj) = E{R(x)}, a solution would be
pj = 1 and pi̸=j = 0. However, this would rule out the possibility of the system being in any
other state than xj . This is a determination that cannot be inferred from the fact (B.11).

The principle of maximum entropy states that among all possible distributions of p that
are compatible with the prior knowledge (B.11), the distribution which expresses the most
uncertainty is the one that most accurately models the knowledge about the system. The
measure of uncertainty of a distribution is the entropy

H(x) =−
N∑
i=1

pi ln(pi). (B.12)

Problem Formulation With this, a constrained optimization problem

max
p=(p1,p2,...)

H(x) (B.13)

subject to g(p) =
 N∑
i=1

pi

−1 = 0 (B.14)

and h(p) =
 N∑
i=1

piR(xi)
−E{R(x)}= 0 (B.15)

195

B MATHEMATICAL SUPPLEMENTS

can be formulated.

Solution To solve the problem, the Lagrange multipliers λ and µ are used.

L(p,λ,µ) =H(p)−λg(p)−µh(p) (B.16)

For the maximum, it must hold that∇(p1,p2,...,pN ,λ,µ)L= 0. From the partial derivative

∂L

∂pi
=− ln(pi)−1−λ−µR(xi) (B.17)

it follows, that p must be distributed according to

pi = e−λ−µR(xi)−1. (B.18)

Because the sum of all probabilities adds to 1 (B.14), it is clear, that e−λ−1 is a normalization
constant, such that pi can also be written as

(B.19)

pi = e−µR(xi)∑N
k=1 e

−µR(xk) . (B.20)

The remaining constant µ can be determined by inserting (B.20) into (B.15), which is not
explicitly solved here for brevity.

The result (B.20) of the maximum-entropy solution shows that the system assumes the state
xi with a probability proportional to its exponential reward. States with high rewards are
exponentially more likely than states with low rewards.

Maximum Conditional Entropy Next, the same problem is solved for a conditional
random variable x|y. The system again can assume N discrete states (x1,x2, . . . ,xN) with
unknown conditional probabilities py = (p(x1|y),p(x2|y), . . . ,p(xN |y)). The reward for each
state depends on both, the state and the conditional variable. What is the distribution of py
that maximizes the conditional entropy

H(x|y = y) =−
N∑
i=1

p(xi|y) lnp(xi|y) (B.21)

subject to a fixed expected value of the reward

Ex|y=y {R(x,y)}=
N∑
i=1

p(xi|y)R(x,y)? (B.22)

196

B.3 MAXIMUM ENTROPY DISTRIBUTION

The problem can be solved in the same way as above using Lagrange multipliers, leading to
the solution

p(xi|y) = e−λ−1−µR(xi,y) = e−µR(xi,y)/Z(y). (B.23)

In contrast to the non-conditional case, the normalizing term

Z(y) = eλ+1 =
N∑
i=1

e−µR(xi,y) (B.24)

now depends on the conditional variable.

Continuous Random Variables Applied to continuous random variables with density p(x),
the maximum entropy method yields similar results, as for example shown in [CT06, Ch. 12].
Then, the density assumes the form

p(x) = e−λ−µR(x)−1 = e−µR(x)/Z(µ) (B.25)

with the normalizing factor

Z(µ) = eλ+1 =
∫ ∞

x=−∞
e−µR(x)dx. (B.26)

197

C Training Details

C.1 Kinematic Model Parameters

To select reasonable parameters for the kinematic model (see Section 3.1), data from an
2019 Audi A6 AWD is used. The total length is 4951 mm, the width is 2110 mm, and the
wheelbase lr+ lf ≈ 2925mm [AG22, p. 136]. According to NHTSA measurements [JZH20],
the longitudinal center of gravity is lf ≈ 1336mm behind the front axle. Thus, lr ≈ 1589mm.
The turning circle is 12.4m, thus the minimum turning radius is rmin = 6.2m [ADA22]. Using
the kinematic bicycle model from Figure 3.2, the turning radius is used to determine the
maximum steering angle δ. From the drawing, it is clear that

sinβ = lr
r

(C.1)

Moreover, according to (3.4),

β = arctan
(

lr
lf + lr

tan(δ)
)
. (C.2)

With this, the steering angle

δ = arctan
(

tan(β) lf + lr
lr

)
(C.3)

= arctan
 lr + lf√

r2− l2r

 (C.4)

corresponding to the current driving radius r can be computed.1 Thus, δmax≈ 26◦≈ π/7rad.

C.2 Behavioral Cloning

The training parameters for single-step training are listed in Table C.1 and the multi-step
parameters are displayed in Table C.2.

1The relation tan(arcsin(x)) = x√
(1−x2)

is used [Bro+05, Ch. 2.8.3].

199

C TRAINING DETAILS

Table C.1: Single-step BC training parameters

Parameter Value

Policy network shape (22, 50, 50, 2§)
Policy network activation tanh
Optimizer Adam [KB15]
Adam: Learning rate 1 ·10−3

Adam: (β1,β2) (0.9,0.999)
Gradient steps 100,000
Number of training samples 60,169
Training duration ∼5 min

§The network architecture is depicted in Figure C.1.

Table C.2: Multi-Step BC training parameters

Parameter Value

Policy network shape (22, 50, 50, 2§)
Policy network activation tanh
Optimizer Adam [KB15]
Adam: Learning rate 1 ·10−3

Adam: (β1,β2) (0.9,0.999)
Gradient steps 500
Simulation Length 5, 10, 20, 40, and 80 steps
Simulation step length ∆t 0.2 s
Number of training trajectories 11279, 6046, 3039, 1499, 695∗

Training duration ∼ 1h,2h,3h,4h,5h†

§The network architecture is depicted in Figure C.1.
∗As the training trajectories are sliced into non-overlapping pieces, the number of training
trajectories approximately halves when the number of simulation steps is doubled. See the
description in Section 4.3.2.
†Each model is approximately trained for 1 hour. However, the trained 5-step model is the
basis of the 10-step model, and that is the basis of the 20-step model, and so on. Hence, the
effective training time of the models with more simulation steps is larger.

200

C.2 BEHAVIORAL CLONING

Figure C.1: Architecture of the multilayer perceptron used for learning the policy. The number of
inputs is typically 22, but varies according to the number of elements of the feature vector.
Two hidden layers with 50 neurons each follow. After each hidden layer, a tanh
nonlinearity is used (not shown). The number of outputs is 2, representing the steering
angle and the acceleration. To ensure that they are bounded, the outputs are also passed
through a tanh function and then scaled and shifted before being interpreted the physical
values in SI units. For RL, two additional outputs that are independent of the inputs
represent the standard deviation of the two actions. These outputs are only used during
the training phase. The same network architecture is also used for training the RL value
estimate and the GAIL and AIRL discriminator, the only difference being that the
network has just one output in these cases. Diagram generated with [LeN19].

201

C TRAINING DETAILS

C.3 Reinforcement Learning

The training parameters for single-agent Reinforcement Learning are listed in Table C.3, and
the multi-agent training parameters are listed in Table C.4. To illustrate the situations that the
MARL training is performed in, Figure C.2 displays some of the randomly initialized training
situations.

202

C.3 REINFORCEMENT LEARNING

Table C.3: Single-Agent RL training parameters

Parameter Value

Policy network shape (11, 50, 50, 2+2§)
Value network shape (11, 50, 50, 1)
Policy, value net. activation tanh
Discount factor γ 0.99
Generalized Advantage Estimate λ [Sch+18a] 0.95

Optimizer∗ Adam [KB15]
Adam: Learning rate 3 ·10−4

Adam: (β1,β2) (0.9,0.999)
PPO iterations over full batch 20 per epoch
PPO clip range 0.2
PPO minibatch size 1024
PPO minimum action noise σmin e−2

PPO epochs 1000

Simulation length 200 steps
Step length ∆t 0.2 s
Simulated agents per epoch 50
Training duration ∼ 1h
Experience samples per epoch up to 10,000†

§The two mean actions are the outputs of the fully connected policy network. The two
standard deviations are independent of the input.
∗Two optimizers are used, one for the policy network and one for the value network. Both use
the same parameters.
†This is the product of simulation length and simulated agents per epoch. Fewer experiences
are collected, when agents terminate early due to leaving the track, which often happens
during early training.

203

C TRAINING DETAILS

Figure C.2: 12 of the 50 situations that are initialized randomly at every training epoch. The traffic
density decreases for higher situation numbers. The route intention, lane relative heading
and lateral offset of each agent is initialized randomly. The speed is initialized within
U(0,20)m/s in some situations, and within U(0,3)m/s in others. To visualize the
different initial velocities, the position of each agent after 0.5 s of simulation is plotted
transparent.

204

C.4 AIRL, GAIL

Table C.4: Multi-Agent RL training parameters

Parameter Value

Policy network shape (22§, 50, 50, 2+2∗)
Value network shape (22§, 50, 50, 1)
Policy, value net. activation tanh
Discount factor γ 0.99
Generalized Advantage Estimate λ [Sch+18a] 0.95
Optimizer same as single-agent∗

PPO settings same as single-agent∗

Simulation settings same as single-agent∗

Simulated agents per epoch approximately 500
Training duration 3 to 4h
Experience samples per epoch up to 100,000∗

§The networks with additional preference input have 25 inputs.
∗See Table C.3.

C.4 AIRL, GAIL

The training parameters of GAIL and AIRL are listed in Table C.5.

205

C TRAINING DETAILS

Table C.5: GAIL and AIRL training parameters

Parameter Value

Policy network shape (22, 50, 50, 2+2)
Value network shape (22, 50, 50, 1)
Discriminator network shape (8-25§, 50, 50, 1)
Policy, value, discriminator net. activation tanh

Discount factor γ 0.99
Generalized Advantage Estimate λ [Sch+18a] 0.95
Optimizer∗ Adam [KB15]
Adam: Policy and Value network learning rate 1 ·10−3

Adam: Discriminator learning rate 3 ·10−4

Adam: (β1,β2) (0.9,0.999)
PPO iterations over full batch 20 per epoch
PPO clip range 0.2
PPO minibatch size 2048
PPO minimum action noise σmin e−2

Discriminator: updates per epoch over full batch 1
Discriminator: minibatch size 2048
Discriminator: number of historic experiences 20†

Normalized discriminator noise 0.2¶ or 0

Training epochs 200
Simulation length 50 steps
Step length ∆t 0.2 s
Simulated agents per epoch 1007
Min./Mean/Max. number of vehicles per situation 4/12.1/24
Experience samples per epoch around 50,000‡

Training duration ∼ 45min
AIRL only: additional agents in fictional situations per epoch ∼ 1250

§The input size depends on the number of features used by the discriminator. This varies,
depending on whether the full or restricted feature set is used and depending on whether the
last steering angle is an additional input. See Table 6.1 for details.
∗Three optimizers are used, one for the policy network, one for the value network, and one
for the discriminator. In all cases, the Adam algorithm is used.
†The discriminator is not only trained on the most recent policy execution, but additionally on
data from 20 random earlier policy executions to avoid overfitting to the current policy.
¶The discriminator inputs are standardized such that the mean is 0 and the standard deviation
is 1. When discriminator noise is enabled, additional Gaussian noise with µ= 0,σ = 0.2 is
added to each feature value independently.
‡This is the product of simulation length and simulated agents per epoch. Fewer experiences
are collected, when agents terminate early due to leaving the track, which often happens
during early training. See also p.148.

206

D Additional Model Executions

This chapter shows the final models evaluated in Chapter 7 in additional situations for a closer
visual investigation of their performance.

The situation depicted in Figures D.1 and D.2 is set up at the new roundabout from Figure 7.3
that was not used for training any of the models. Hence, this experiment probes the ability
of the models to generalize to an unseen situation. A crop of the full map is shown to focus
on interesting interactions at the roundabout entries. Some vehicles are initialized critically.
Consider for example vehicle #16, which approaches its preceding vehicle #20 with a large
velocity. Except from the AIRL policy, no model has learned to brake strong enough to avoid
a collision. Apart from that, GAIL and the multi-step policies do not leave the track and
collide only in one additional case (#9 for the MS8-policy). The single-step policy seems
incapable of controlling the situation, as many vehicles drift off the track in Figure D.2a.

Next, the performance in the fictional and more diverse situation from Figure 6.12 is inves-
tigated. As the situation spans a large area, labels of individual vehicles are omitted. The
vehicles are initialized critically with some near-collisions. Figure D.3 shows that both GAIL
and AIRL are capable of issuing collision-free predictions on the four new road layouts around
the roundabout. In contrast, none of the direct methods from Figure D.4 is able to control all
vehicles in the new auxiliary situations. The multi-step policies leave the track less often than
the single-step policy, but still fail to successfully handle the unknown situation. Also, the
dense traffic with many critical initial states leads to many collisions inside the roundabout
for all models from Figure D.4. In contrast, only three collisions for GAIL and one collision
for AIRL can be observed inside the roundabout.

207

D ADDITIONAL MODEL EXECUTIONS

14

16

17

18

20

21

22

10

12

14

16

17

18

20

21
22

10

12

14

17

18

20

2122

8

10

12

13

14

17
18

19
20

21

22

6

8

9

10

12

13

14

17
18

19 20

21

22

2

4

6

8

9

10

12

13

14

15

17

1819 20

21

22

2

4

5

6

8

9

10

11 12

1314

15

17

18
19

20

21

22

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

0

2

4

5

6

8

9

10

11 12

13
1415

17

18

19

2021

22

9.8 s

(a) GAIL model prediction
14

16

17

18

20

21

22

10

12

14

16

17

18

20

21
22

8

10

12

14

16

17

18

19
20

2122

6

8

10

12

13

14

16

1718

19 20

21

22

2

6

8

9

10

12

13

14

15 16

17

1819 20

21

22

2

4

5

6

8

9

10

12

1314

15 16

17

18
19

20

21

22

0

2

4

5

6

8

9
10

11 12

13
1415 16

17

18

19

20
21

22

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

0

2

4

5

6

7 8

910

11 12

13

14
15

16

17

18

19

2021

9.8 s

(b) AIRL model prediction

Figure D.1: Execution of the learned policies in a randomly initialized situation on the map of an
untrained roundabout.

208

14

16

17

18

20

21

22

10

12

14

16

17

18

20

21
22

8
12

14

18

19

20

2122

8
12

14

19

20

21

22

6

8
12

14

19

20

21

22

6

8
12

13

14

15
19

20

21

22

2

4

6

7

8
12

13
14

15 19 20

21

22

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 2

4

5

6

7

8
12

1314
15 19

21

9.8 s

(a) Single-step model prediction
14

16

17

18

20

21

22

10

12

14

16

17

18

20

21
22

10

12

14

17

18

19
20

2122

8

10

12

14

1718

19
20

21

22

6

8

10

12

13

14

15

17

1819
20

21

22

2

6

8

10

12

13

14

15

17

18
19 20

21

22

2

4

5

6

8

10

11 12

1314
15

17

18

19
20

21

22

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s

0

2

4

5

6

7 8

10
11 12

13
1415

17

18

19

2021

9.8 s

(b) Multi-step model prediction, trained with 8 s trajectories
14

16

17

18

20

21

22

10

12

14

16

17

18

20

21
22

10

12

14

17

18

19
20

2122

8

10

12

13

14

1718

19
20

21
22

6

8

10

12

13

14

17
1819

20

21

22

6

8

9

10

12

13

14

15

17

18
19 20

21

22

2

4

6

8

9

10

12

13
14

15

17

18

19 20
21

22

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 2

4

6

8

9
10

11 12

1314
15

17

18

19 20
21

9.8 s

(c) Multi-step model prediction, trained with 16 s trajectories

Figure D.2: Execution of the learned policies in a randomly initialized situation on the map of an
untrained roundabout.

209

D ADDITIONAL MODEL EXECUTIONS

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

(a) GAIL model prediction

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

(b) AIRL model prediction

Figure D.3: Execution of the learned policies in a randomly initialized situation on the map of another
roundabout that was used during additional AIRL training.

210

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

(a) Single-step model prediction

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

(b) Multi-step model prediction, trained with 8 s trajectories

Figure D.4: Execution of the learned policies in a randomly initialized situation on the map of another
roundabout that was used during additional AIRL training.

211

D ADDITIONAL MODEL EXECUTIONS

0.0 s 1.4 s 2.8 s 4.2 s

5.6 s 7.0 s 8.4 s 9.8 s

(a) Multi-step model prediction, trained with 16 s trajectories

Figure D.5: Continuation of Figure D.4

212

Bibliography

Own References

[Bey+21a] Henrik Bey, Moritz Sackmann, Alexander Lange, and Jörn Thielecke. “Handling
Prediction Model Errors in Planning for Automated Driving Using POMDPs”.
In: International Intelligent Transportation Systems Conference. Indianapolis,
USA: IEEE, 2021, pp. 439–446.

[Bey+21b] Henrik Bey, Moritz Sackmann, Alexander Lange, and Jörn Thielecke. “POMDP
Planning at Roundabouts”. In: Intelligent Vehicles Symposium. Online event:
IEEE, 2021, pp. 264–271.

[Bey+20] Henrik Bey, Maximilian Tratz, Moritz Sackmann, Alexander Lange, and Jörn
Thielecke. “Tutorial on Sampling-based POMDP-planning for Automated Driv-
ing”. In: International Conference on Vehicle Technology and Intelligent Trans-
port Systems. Online event: INSTICC, 2020, pp. 312–321.

[Hof+22] Ulrich Hofmann, Moritz Sackmann, Henrik Bey, and Tobias Leemann. “Ver-
fahren zur Prädiktion von Fahreingriffen, Verfahren zum Training eines Algo-
rithmus und Kraftfahrzeug”. DE102020129451A1. Patent pending. May 2022.

[Kon+21] Fabian Konstantinidis, Moritz Sackmann, Oliver De Candido, Ulrich Hofmann,
Jörn Thielecke, and Wolfgang Utschick. “Parameter Sharing Reinforcement
Learning for Modeling Multi-Agent Driving Behavior in Roundabout Scenarios”.
In: International Intelligent Transportation Systems Conference. Indianapolis,
USA: IEEE, 2021, pp. 1974–1981.

[Kon+23] Fabian Konstantinidis, Moritz Sackmann, Ulrich Hofmann, and Christoph Stiller.
“Modeling Interaction-Aware Driving Behavior using Graph-Based Representa-
tions and Multi-Agent Reinforcement Learning”. In: International Conference
on Intelligent Transportation Systems. Bilbao, Spain: IEEE, 2023.

[Lee+21] Tobias Leemann, Moritz Sackmann, Jörn Thielecke, and Ulrich Hofmann. “Dis-
tribution Preserving Multiple Hypotheses Prediction for Uncertainty Modeling”.
In: European Symposium on Artificial Neural Networks. Online event (Bruges,
Belgium), 2021, pp. 523–528.

[Rad+23] Henrik Radtke, Henrik Bey, Moritz Sackmann, and Torsten Schön. “Predicting
Driver Behavior on the Highway With Multi-Agent Adversarial Inverse Rein-
forcement Learning”. In: Intelligent Vehicles Symposium. Anchorage, Alaska:
IEEE, 2023.

213

D ADDITIONAL MODEL EXECUTIONS

[Sac+20a] Moritz Sackmann, Henrik Bey, Ulrich Hofmann, and Jörn Thielecke. “Classifi-
cation of Driver Intentions at Roundabouts”. In: International Conference on
Vehicle Technology and Intelligent Transport Systems. Online event: INSTICC,
2020, pp. 301–311.

[Sac+20b] Moritz Sackmann, Henrik Bey, Ulrich Hofmann, and Jörn Thielecke. “Prediction
Error Reduction of Neural Networks for Car-Following Using Multi-Step Train-
ing”. In: International Intelligent Transportation Systems Conference. Online
event: IEEE, 2020.

[Sac+22a] Moritz Sackmann, Henrik Bey, Ulrich Hofmann, and Jörn Thielecke. “Learning
a Diverse and Cooperative Policy for Predicting Roundabout Traffic Situa-
tions”. In: 14. Uni-DAS Workshop Fahrerassistenz und automatisiertes Fahren.
Berkheim, Germany, 2022, pp. 1–10.

[Sac+22b] Moritz Sackmann, Henrik Bey, Ulrich Hofmann, and Jörn Thielecke. “Mod-
eling Driver Behavior using Adversarial Inverse Reinforcement Learning”. In:
Intelligent Vehicles Symposium. Aachen, Germany: IEEE, 2022, pp. 1683–1690.

[Sac+21] Moritz Sackmann, Tobias Leemann, Henrik Bey, Ulrich Hofmann, and Jörn
Thielecke. “Multi-Step Training for Predicting Roundabout Traffic Situations”.
In: International Intelligent Transportation Systems Conference. Indianapolis,
USA: IEEE, 2021.

[Vog+20] Carina Vogl, Moritz Sackmann, Ludwig Kürzinger, and Ulrich Hofmann.
“Frenet Coordinate Based Driving Maneuver Prediction at Roundabouts Us-
ing LSTM Networks”. In: Computer Science in Cars Symposium. Online event:
ACM, 2020.

214

References
[AN04] Pieter Abbeel and Andrew Y Ng. “Apprenticeship Learning via Inverse Rein-

forcement Learning”. In: International Conference on Machine Learning. Banff,
Canada, 2004.

[Ala+16] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,
Li Fei-Fei, and Silvio Savarese. “Social LSTM: Human Trajectory Prediction in
Crowded Spaces”. In: Conference on Computer Vision and Pattern Recognition.
Las Vegas, USA: IEEE, 2016, pp. 961–971.

[AY22] Berat Mert Albaba and Yıldıray Yıldız. “Driver Modeling Through Deep Rein-
forcement Learning and Behavioral Game Theory”. In: IEEE Transactions on
Control Systems Technology 30.2 (2022), pp. 885–892.

[Alt10] Matthias Althoff. “Reachability Analysis and its Application to the Safety
Assessment of Autonomous Cars”. PhD thesis. Technische Universität München,
2010.

[AM11] Matthias Althoff and Alexander Mergel. “Comparison of Markov Chain Ab-
straction and Monte Carlo Simulation for the Safety Assessment of Autonomous
Cars”. In: IEEE Transactions on Intelligent Transportation Systems 12.4 (2011),
pp. 1237–1247.

[AN09] Samer Ammoun and Fawzi Nashashibi. “Real time trajectory prediction for
collision risk estimation between vehicles”. In: International Conference on
Intelligent Computer Communication and Processing. IEEE, 2009, pp. 417–422.

[And+21] Marcin Andrychowicz et al. “What Matters in On-Policy Reinforcement Learn-
ing? A Large-Scale Empirical Study”. In: International Conference on Learning
Representations. arXiv: 2006.05990. Online event (Vienna, Austria), 2021.

[Ape+15] Jiří Apeltauer, Adam Babinec, David Herman, and Tomáš Apeltauer. “Auto-
matic Vehicle Trajectory Extraction for Traffic Analysis from Aerial Video
Data”. In: The Int. Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XL-3/W2 (2015), pp. 9–15.

[Arg+09] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. “A
survey of robot learning from demonstration”. In: Robotics and Autonomous
Systems 57.5 (2009), pp. 469–483.

[AB17] Martin Arjovsky and Léon Bottou. “Towards Principled Methods for Training
Generative Adversarial Networks”. In: International Conference on Learning
Representations. Toulon, France, 2017.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Generative
Adversarial Networks”. In: Proceedings of Machine Learning Research 70
(2017). arXiv: 1701.07875, pp. 214–223.

215

D ADDITIONAL MODEL EXECUTIONS

[BKS21] Moritz Bächer, Espen Knoop, and Christian Schumacher. “Design and Control
of Soft Robots Using Differentiable Simulation”. In: Current Robotics Reports
2.2 (2021), pp. 211–221.

[Bag15] J. Andrew Bagnell. An Invitation to Imitation. Tech. rep. Robotics Institute,
Carnegie Mellon University, 2015.

[BKO19] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. “ChauffeurNet: Learning
to Drive by Imitating the Best and Synthesizing the Worst”. In: Robotics: Science
and Systems. Freiburg, Germany, 2019.

[Bar+19] Emmanouil N. Barmpounakis, Eleni I. Vlahogianni, John C. Golias, and Adam
Babinec. “How accurate are small drones for measuring microscopic traffic
parameters?” In: Transportation Letters 11.6 (2019), pp. 332–340.

[Ber+21] Luca Bergamini et al. “SimNet: Learning Reactive Self-driving Simulations
from Real-world Observations”. In: International Conference on Robotics and
Automation. Xi’An, China: IEEE, 2021, pp. 5119–5125.

[BT08] Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to probability. 2nd ed.
Optimization and computation series. Belmont: Athena scientific, 2008.

[Bey+19] Henrik Bey, Frank Dierkes, Sebastian Bayerl, Alexander Lange, Dennis Fass-
bender, and Jörn Thielecke. “Optimization-based Tactical Behavior Planning
for Autonomous Freeway Driving in Favor of the Traffic Flow”. In: Intelligent
Vehicles Symposium. Paris, France: IEEE, 2019, pp. 1033–1040.

[Bha+23] Raunak Bhattacharyya, Blake Wulfe, Derek Phillips, Alex Kuefler, Jeremy Mor-
ton, Ransalu Senanayake, and Mykel Kochenderfer. “Modeling Human Driving
Behavior through Generative Adversarial Imitation Learning”. In: IEEE Trans-
actions on Intelligent Transportation Systems 24.3 (2023). arXiv: 2006.06412,
pp. 2874–2887.

[Bha+19] Raunak P. Bhattacharyya, Derek J. Phillips, Changliu Liu, Jayesh K. Gupta,
Katherine Driggs-Campbell, and Mykel J. Kochenderfer. “Simulating Emergent
Properties of Human Driving Behavior Using Multi-Agent Reward Augmented
Imitation Learning”. In: International Conference on Robotics and Automation.
Montreal, Canada: IEEE, 2019, pp. 789–795.

[Bha+18] Raunak P. Bhattacharyya, Derek J. Phillips, Blake Wulfe, Jeremy Morton, Alex
Kuefler, and Mykel J. Kochenderfer. “Multi-Agent Imitation Learning for Driv-
ing Simulation”. In: International Conference on Intelligent Robots and Systems.
Madrid, Spain: IEEE/RSJ, 2018.

[Bin07] Ken Binmore. Playing for real: a text on game theory. Oxford University Press,
2007.

216

[Bis06] Christopher M. Bishop. Pattern recognition and machine learning. 1st ed. New
York: Springer, 2006.

[Boj+16] Mariusz Bojarski et al. End to End Learning for Self-Driving Cars. Pre-print,
arXiv: 1604.07316. 2016.

[Bou+20] Maxime Bouton, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Mykel J.
Kochenderfer. “Reinforcement Learning with Iterative Reasoning for Merging
in Dense Traffic”. In: International Conference on Intelligent Transportation
Systems. Online event (Rhodes, Greece): IEEE, 2020.

[Bro+05] Ilja Nikolajewitsch Bronstein, Konstantin Adolfowitsch Semendjajew, Gerhard
Musiol, and Heiner Mühlig. Taschenbuch der Mathematik. 6th ed. Frankfurt am
Main, Germany: Harri Deutsch, 2005.

[BDK20] Kyle Brown, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. A Tax-
onomy and Review of Algorithms for Modeling and Predicting Human Driver
Behavior. Pre-print, arXiv:2006.08832v3. Nov. 2020.

[Bur+22] Christoph Burger, Johannes Fischer, Frank Bieder, Ömer Şahin Taş, and
Christoph Stiller. “Interaction-Aware Game-Theoretic Motion Planning for
Automated Vehicles using Bi-level Optimization”. In: International Conference
on Intelligent Transportation Systems. Macau, China: IEEE, 2022, pp. 3978–
3985.

[BBD08] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. “A Comprehensive
Survey of Multiagent Reinforcement Learning”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38.2 (2008),
pp. 156–172.

[Cae+20] Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving”.
In: Conference on Computer Vision and Pattern Recognition. Online event:
IEEE/CVF, 2020, pp. 11621–11631.

[Cas+20a] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. “SpAGNN:
Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting
from Sensor Data”. In: International Conference on Robotics and Automation.
Paris, France: IEEE, 2020, pp. 9491–9497.

[Cas+20b] Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and Raquel Urta-
sun. “Implicit Latent Variable Model for Scene-Consistent Motion Forecasting”.
In: European Conference on Computer Vision. arXiv: 2007.12036. Online Event
(Glasgow, UK): Springer, 2020, pp. 624–641.

[CLU18] Sergio Casas, Wenjie Luo, and Raquel Urtasun. “IntentNet: Learning to Predict
Intention from Raw Sensor Data”. In: Proceedings of The 2nd Conference on
Robot Learning, PMLR. Vol. 87. Zürich, Switzerland, 2018, pp. 947–956.

217

D ADDITIONAL MODEL EXECUTIONS

[Cha+19] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. “Multi-
Path: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Predic-
tion”. In: Proceedings of the Conference on Robot Learning, PMLR. Vol. 100.
Osaka, Japan, 2019, pp. 86–99.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. 2nd ed.
Hoboken, New Jersey: Wiley-Interscience, 2006.

[Cui+19] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi
Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. “Multimodal
Trajectory Predictions for Autonomous Driving using Deep Convolutional Net-
works”. In: International Conference on Robotics and Automation. Montreal,
Canada: IEEE, 2019, pp. 2090–2096.

[DBU21] Oliver De Candido, Maximilian Binder, and Wolfgang Utschick. “An Inter-
pretable Lane Change Detector Algorithm based on Deep Autoencoder Anomaly
Detection”. In: Intelligent Vehicles Symposium. Nagoya, Japan: IEEE, 2021,
pp. 516–523.

[dHJL19] Pim de Haan, Dinesh Jayaraman, and Sergey Levine. “Causal Confusion in
Imitation Learning”. In: Advances in Neural Information Processing Systems.
Vol. 32. Vancouver, Canada, 2019.

[DRT18] Nachiket Deo, Akshay Rangesh, and Mohan M. Trivedi. “How Would Surround
Vehicles Move? A Unified Framework for Maneuver Classification and Motion
Prediction”. In: IEEE Transactions on Intelligent Vehicles 3.2 (2018), pp. 129–
140.

[DT18] Nachiket Deo and Mohan M. Trivedi. “Convolutional Social Pooling for Ve-
hicle Trajectory Prediction”. In: Conference on Computer Vision and Pattern
Recognition Workshops. Salt Lake City, USA: IEEE, 2018, pp. 1468–1476.

[dWit+20] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-
chuk, Philip H. S. Torr, Mingfei Sun, and Shimon Whiteson. Is Independent
Learning All You Need in the StarCraft Multi-Agent Challenge? Pre-print, arXiv:
2011.09533v1. Nov. 2020.

[DZ87] E.D. Dickmanns and A. Zapp. “Autonomous High Speed Road Vehicle Guidance
by Computer Vision”. In: IFAC Proceedings Volumes 20.5 (1987), pp. 221–226.

[Die+19] Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. “Graph
Neural Networks for Modelling Traffic Participant Interaction”. In: Intelligent
Vehicles Symposium. Paris, France: IEEE, 2019.

218

[Dju+20] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-
Chieh Chou, Tsung-Han Lin, Nitin Singh, and Jeff Schneider. “Uncertainty-
aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving”.
In: Winter Conference on Applications of Computer Vision. Note: Work was
originally published in 2018, but revised twice with different titles. See arXiv:
1808.05819. Snowmass Village, USA: IEEE/CVF, 2020, pp. 2095–2104.

[Dju+21] Nemanja Djuric et al. “MultiXNet: Multiclass Multistage Multimodal Motion
Prediction”. In: Intelligent Vehicles Symposium. Nagoya, Japan: IEEE, 2021,
pp. 435–442.

[Dos17] Alexey Dosovitskiy. “CARLA: An Open Urban Driving Simulator”. In: Proceed-
ings of the 1st Annual Conference on Robot Learning, PMLR. Vol. 78. Mountain
View, USA, 2017.

[Ett+21] Scott Ettinger et al. “Large Scale Interactive Motion Forecasting for Autonomous
Driving: The Waymo Open Motion Dataset”. In: International Conference on
Computer Vision. Online event (Montreal, Canada): IEEE/CVF, 2021, pp. 9710–
9719.

[Eve+16] Niclas Evestedt, Erik Ward, John Folkesson, and Daniel Axehill. “Interaction
aware trajectory planning for merge scenarios in congested traffic situations”.
In: International Intelligent Transportation Systems Conference. Rio de Janeiro,
Brazil: IEEE, 2016, pp. 465–472.

[Fin+16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A Connec-
tion between Generative Adversarial Networks, Inverse Reinforcement Learn-
ing, and Energy-Based Models. NIPS workshop on adversarial training, arXiv:
1611.03852. Nov. 2016.

[FLA16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep
Inverse Optimal Control via Policy Optimization”. In: Proceedings of The 33rd
International Conference on Machine Learning. Vol. 48. New York City, USA,
2016, pp. 49–58.

[Fis+19] Jaime F. Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S. Shankar Sastry,
and Anca D. Dragan. “Hierarchical Game-Theoretic Planning for Autonomous
Vehicles”. In: International Conference on Robotics and Automation. Montreal,
Canada: IEEE, 2019, pp. 9590–9596.

[FLL18] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with
Adversarial Inverse Reinforcement Learning”. In: International Conference on
Learning Representations. Vancouver, Canada, 2018.

219

D ADDITIONAL MODEL EXECUTIONS

[Gao+20] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong
Li, and Cordelia Schmid. “VectorNet: Encoding HD Maps and Agent Dynam-
ics from Vectorized Representation”. In: Conference on Computer Vision and
Pattern Recognition. Online event: IEEE/CVF, 2020.

[GS19] Mario Garzón and Anne Spalanzani. “Game theoretic decision making for au-
tonomous vehicles’ merge manoeuvre in high traffic scenarios”. In: International
Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE,
2019, pp. 3448–3453.

[GS20] Mario Garzón and Anne Spalanzani. “Game theoretic decision making based
on real sensor data for autonomous vehicles’ maneuvers in high traffic”. In:
International Conference on Robotics and Automation. Online event (Paris,
France): IEEE, 2020, pp. 5378–5384.

[Gep17] Pawel Gepner. “Using AVX2 Instruction Set to Increase Performance of High
Performance Computing Code”. In: Computing and Informatics 36.5 (2017),
pp. 1001–1018.

[Gil+21] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and
Fabien Moutarde. “HOME: Heatmap Output for future Motion Estimation”. In:
International Intelligent Transportation Systems Conference. Indianapolis, USA:
IEEE, 2021, pp. 500–507.

[Gip80] Peter G. Gipps. “A Behavioural Car-Following Model for Computer Simulation”.
In: Transportation Research Part B: Methodological 15.2 (1980), pp. 105–111.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. 1st ed.
MIT Press, 2016. URL: http://www.deeplearningbook.org.

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Ad-
versarial Nets”. In: Neural Information Processing Systems. Vol. 27. Montreal,
Canada, 2014.

[Gre00] Marc Green. “"How Long Does It Take to Stop?" Methodological Analysis of
Driver Perception-Brake Times”. In: Transportation Human Factors 2.3 (2000),
pp. 195–216.

[Gup+18] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
“Social GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks”. In: Conference on Computer Vision and Pattern Recognition. Salt
Lake City, USA: IEEE/CVF, 2018, pp. 2255–2264.

[GEK17] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. “Cooperative Multi-
agent Control Using Deep Reinforcement Learning”. In: Autonomous Agents
and Multiagent Systems. São Paulo, Brazil, 2017, pp. 66–83.

220

http://www.deeplearningbook.org

[GBK12] Abner Guzmán-Rivera, Dhruv Batra, and Pushmeet Kohli. “Multiple Choice
Learning: Learning to Produce Multiple Structured Outputs”. In: Advances in
Neural Information Processing Systems. Lake Tahoe, USA, 2012.

[Haa+19] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey
Levine. “Learning to Walk via Deep Reinforcement Learning”. In: Robotics:
Science and Systems. Freiburg, Germany, 2019.

[Haa+18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft Actor
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor”. In: Proceedings of the 35th International Conference on
Machine Learning, PMLR. Vol. 80. Stockholm, Sweden, 2018, pp. 1861–1870.

[HBZ04] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. “Dynamic Pro-
gramming for Partially Observable Stochastic Games”. In: Proceedings of the
Nineteenth National Conference on Artificial Intelligence. San Jose, USA, 2004,
pp. 709–715.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: Conference on Computer Vision and
Pattern Recognition. Las Vegas, USA: IEEE/CVF, 2016, pp. 770–778.

[HCL19] Mikael Henaff, Alfredo Canziani, and Yann LeCun. “Model-Predictive Policy
Learning with Uncertainty Regularization for Driving in Dense Traffic”. In:
International Conference on Learning Representations. New Orleans, USA,
2019.

[HE16] Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”.
In: Advances in Neural Information Processing Systems. Vol. 29. Barcelona,
Spain, 2016.

[HWL18] Carl-Johan Hoel, Krister Wolff, and Leo Laine. “Automated Speed and Lane
Change Decision Making using Deep Reinforcement Learning”. In: Interna-
tional Intelligent Transportation Systems Conference. Maui, USA: IEEE, 2018,
pp. 2148–2155.

[HWL20] Carl-Johan Hoel, Krister Wolff, and Leo Laine. “Tactical Decision-Making in
Autonomous Driving by Reinforcement Learning with Uncertainty Estimation”.
In: Intelligent Vehicles Symposium. Las Vegas, USA: IEEE, 2020, pp. 1563–
1569.

[HBD18] Stefan Hoermann, Martin Bach, and Klaus Dietmayer. “Dynamic Occupancy
Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach
with Fully Automatic Labeling”. In: International Conference on Robotics and
Automation. Brisbane, Australia: IEEE, 2018, pp. 2056–2063.

221

D ADDITIONAL MODEL EXECUTIONS

[HSD17] Stefan Hoermann, Daniel Stumper, and Klaus Dietmayer. “Probabilistic long-
term prediction for autonomous vehicles”. In: Intelligent Vehicles Symposium.
Los Angeles, USA: IEEE, 2017, pp. 237–243.

[HSP19] Joey Hong, Benjamin Sapp, and James Philbin. “Rules of the Road: Predicting
Driving Behavior With a Convolutional Model of Semantic Interactions”. In:
Conference on Computer Vision and Pattern Recognition. Long Beach, USA:
IEEE/CVF, 2019, pp. 8446–8454.

[Hou+20] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and
P. Ondruska. “One Thousand and One Hours: Self-driving Motion Prediction
Dataset”. In: Proceedings of the Conference on Robot Learning, PMLR. Vol. 155.
Online event, 2020, pp. 409–418.

[Hua+22] Yanjun Huang, Jiatong Du, Ziru Yang, Zewei Zhou, Lin Zhang, and Hong Chen.
“A Survey on Trajectory-Prediction Methods for Autonomous Driving”. In:
IEEE Transactions on Intelligent Vehicles 7.3 (2022), pp. 652–674.

[Hub64] Peter J. Huber. “Robust Estimation of a Location Parameter”. In: Annals of
Statistic 53.1 (1964), pp. 73–101.

[Hub+17] Constantin Hubmann, Marvin Becker, Daniel Althoff, David Lenz, and
Christoph Stiller. “Decision making for autonomous driving considering interac-
tion and uncertain prediction of surrounding vehicles”. In: Intelligent Vehicles
Symposium. Los Angeles, USA: IEEE, 2017, pp. 1671–1678.

[Hub+18] Constantin Hubmann, Jens Schulz, Marvin Becker, Daniel Althoff, and
Christoph Stiller. “Automated Driving in Uncertain Environments: Planning
With Interaction and Uncertain Maneuver Prediction”. In: IEEE Transactions
on Intelligent Vehicles. Vol. 3. 2018, pp. 5–17.

[HW21] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty
in machine learning: an introduction to concepts and methods”. In: Machine
Learning 110.3 (2021), pp. 457–506.

[Iba+21] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and
Sergey Levine. “How to train your robot with deep reinforcement learning:
lessons we have learned”. In: The International Journal of Robotics Research
40.4-5 (2021), pp. 698–721.

[Ing+19] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. “Learning
Protein Structure with a Differentiable Simulator”. In: International Conference
on Learning Representations. 2019.

222

[Ise+18] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo
Fujimura. “Navigating Occluded Intersections with Autonomous Vehicles Using
Deep Reinforcement Learning”. In: International Conference on Robotics and
Automation. Brisbane, Australia: IEEE, 2018, pp. 2034–2039.

[JDZ21] Faris Janjoš, Maxim Dolgov, and J. Marius Zöllner. “Self-Supervised Action-
Space Prediction for Automated Driving”. In: Intelligent Vehicles Symposium.
Aachen, Germany: IEEE, 2021, pp. 200–207.

[JDZ22] Faris Janjoš, Maxim Dolgov, and J. Marius Zöllner. “StarNet: Joint Action-
Space Prediction with Star Graphs and Implicit Global-Frame Self-Attention”.
In: Intelligent Vehicles Symposium. Aachen, Germany: IEEE, 2022, pp. 280–
286.

[Jay57] E. T. Jaynes. “Information Theory and Statistical Mechanics”. In: Physical
Review 106.4 (1957), pp. 620–630.

[KP16] Nidhi Kalra and Susan M Paddock. “Driving to Safety”. In: Transportation
Research Part A: Policy and Practice 94 (2016), pp. 182–193.

[Kam+20] Danial Kamran, Carlos Fernandez Lopez, Martin Lauer, and Christoph Stiller.
“Risk-Aware High-level Decisions for Automated Driving at Occluded Intersec-
tions with Reinforcement Learning”. In: Intelligent Vehicles Symposium. Las
Vegas, USA: IEEE, 2020, pp. 1205–1212.

[Kar+22] Phillip Karle, Maximilian Geisslinger, Johannes Betz, and Markus Lienkamp.
“Scenario Understanding and Motion Prediction for Autonomous Vehicles -
Review and Comparison”. In: IEEE Transactions on Intelligent Transportation
Systems 23.10 (2022), pp. 16962–16982.

[Kar+20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. “Analyzing and Improving the Image Quality of StyleGAN”.
In: Conference on Computer Vision and Pattern Recognition. Online event:
IEEE/CVF, 2020, pp. 8110–8119.

[Ken+19] Alex Kendall et al. “Learning to Drive in a Day”. In: International Conference
on Robotics and Automation. Montreal, Canada: IEEE, 2019.

[KTH07] Arne Kesting, Martin Treiber, and Dirk Helbing. “General Lane-Changing
Model MOBIL for Car-Following Models”. In: Transportation Research Record:
Journal of the Transportation Research Board 1999.1 (2007), pp. 86–94.

[KTH09] Arne Kesting, Martin Treiber, and Dirk Helbing. “Enhanced Intelligent Driver
Model to Access the Impact of Driving Strategies on Traffic Capacity”. In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 368.1928 (2009), pp. 4585–4605.

223

D ADDITIONAL MODEL EXECUTIONS

[KKC20] Sanmin Kim, Dongsuk Kum, and Jun Won Choi. “RECUP Net: RECUrsive
Prediction Network for Surrounding Vehicle Trajectory Prediction with Fu-
ture Trajectory Feedback”. In: International Intelligent Transportation Systems
Conference. Online event (Rhodes, Greece): IEEE, 2020.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: International Conference on Learning Representations. San Diego,
USA, 2015.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
International Conference on Learning Representations. Banff, Canada, 2014.

[Kit+12] Kris M. Kitani, Brian D. Ziebart, James Andrew Bagnell, and Martial Hebert.
“Activity Forecasting”. In: European Conference on Computer Vision. Florence,
Italy, 2012, pp. 201–214.

[KWW22] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. Algorithms for
decision making. 1st ed. Cambridge: MIT Press, 2022.

[Kon+15] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. “Kine-
matic and dynamic vehicle models for autonomous driving control design”. In:
Intelligent Vehicles Symposium. Seoul, South Korea: IEEE, 2015, pp. 1094–
1099.

[KY21] Cevahir Köprülü and Yıldıray Yıldız. “Act to Reason: A Dynamic Game Theo-
retical Driving Model for Highway Merging Applications”. In: Conference on
Control Technology and Applications. Online event (San Diego, USA): IEEE,
2021, pp. 747–752.

[KA17] Markus Koschi and Matthias Althoff. “SPOT: A tool for set-based prediction
of traffic participants”. In: Intelligent Vehicles Symposium. Los Angeles, USA:
IEEE, 2017, pp. 1686–1693.

[Krä21] Stefan Krämer. “LiDAR-Based Object Tracking and Shape Estimation”. PhD
thesis. Karlsruhe, Germany: Karlsruher Institut für Technologie (KIT), 2021.

[KWG97] S. Krauß, P. Wagner, and C. Gawron. “Metastable states in a microscopic model
of traffic flow”. In: Physical Review E 55.5 (1997), pp. 5597–5602.

[Kre89] David M. Kreps. “Nash Equilibrium”. In: Game Theory. Ed. by John Eatwell,
Murray Milgate, and Peter Newman. London: Macmillan, 1989, pp. 167–177.

[KGB15] Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. “Learning driving styles
for autonomous vehicles from demonstration”. In: International Conference on
Robotics and Automation. Seattle, USA: IEEE, 2015, pp. 2641–2646.

[Kue+17] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. “Imi-
tating Driver Behavior with Generative Adversarial Networks”. In: Intelligent
Vehicles Symposium. Los Angeles, USA: IEEE, 2017, pp. 204–211.

224

[Lee+17] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B. Choy, Philip H. S.
Torr, and Manmohan Chandraker. “DESIRE: Distant Future Prediction in Dy-
namic Scenes with Interacting Agents”. In: Conference on Computer Vision and
Pattern Recognition. Honolulu, HI, USA: IEEE/CVF, 2017, pp. 2165–2174.

[Lef+14] Stéphanie Lefèvre, Chao Sun, Ruzena Bajcsy, and Christian Laugier. “Compari-
son of parametric and non-parametric approaches for vehicle speed prediction”.
In: American Control Conference. Portland, OR, USA: IEEE, 2014, pp. 3494–
3499.

[LVL14] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. “A survey on motion
prediction and risk assessment for intelligent vehicles”. In: ROBOMECH Journal
1.1 (2014).

[Len+17] David Lenz, Frederik Diehl, Michael Truong Le, and Alois Knoll. “Deep neural
networks for Markovian interactive scene prediction in highway scenarios”. In:
Intelligent Vehicles Symposium. Los Angeles, USA: IEEE, 2017, pp. 685–692.

[LKK16] David Lenz, Tobias Kessler, and Alois Knoll. “Tactical cooperative planning for
autonomous highway driving using Monte-Carlo Tree Search”. In: Intelligent
Vehicles Symposium. Gothenburg, Sweden: IEEE, 2016, pp. 447–453.

[Lev+20] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforce-
ment Learning: Tutorial, Review, and Perspectives on Open Problems. Pre-print,
arXiv:2005.01643. Nov. 2020.

[Li+16] Nan Li, Dave Oyler, Mengxuan Zhang, Yildiray Yildiz, Anouck Girard, and
Ilya Kolmanovsky. “Hierarchical reasoning game theory based approach for
evaluation and testing of autonomous vehicle control systems”. In: Conference
on Decision and Control. Las Vegas, USA: IEEE, 2016, pp. 727–733.

[Li+18] Nan Li, Dave W. Oyler, Mengxuan Zhang, Yildiray Yildiz, Ilya Kolmanovsky,
and Anouck R. Girard. “Game Theoretic Modeling of Driver and Vehicle Inter-
actions for Verification and Validation of Autonomous Vehicle Control Systems”.
In: IEEE Transactions on Control Systems Technology 26.5 (2018), pp. 1782–
1797.

[Li+22] Nan Li, Yu Yao, Ilya Kolmanovsky, Ella Atkins, and Anouck R. Girard. “Game-
Theoretic Modeling of Multi-Vehicle Interactions at Uncontrolled Intersec-
tions”. In: IEEE Transactions on Intelligent Transportation Systems 23.2 (2022),
pp. 1428–1442.

[Lia+20] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel
Urtasun. “Learning Lane Graph Representations for Motion Forecasting”. In:
European Conference on Computer Vision. Online event, 2020, pp. 541–556.

225

D ADDITIONAL MODEL EXECUTIONS

[Lie+12] Martin Liebner, Michael Baumann, Felix Klanner, and Christoph Stiller. “Driver
intent inference at urban intersections using the intelligent driver model”. In:
Intelligent Vehicles Symposium. Alcalá de Henares, Madrid, Spain: IEEE, 2012,
pp. 1162–1167.

[Lop+18] Pablo Alvarez Lopez et al. “Microscopic Traffic Simulation using SUMO”. In:
International Intelligent Transportation Systems Conference. Maui, USA: IEEE,
2018, pp. 2575–2582.

[Low+17] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive En-
vironments”. In: Advances in Neural Information Processing Systems. Vol. 30.
Long Beach, USA, 2017.

[LYU18] Wenjie Luo, Bin Yang, and Raquel Urtasun. “Fast and Furious: Real Time
End-to-End 3D Detection, Tracking and Motion Forecasting with a Single
Convolutional Net”. In: Conference on Computer Vision and Pattern Recognition.
Salt Lake City, USA: IEEE/CVF, 2018, pp. 3569–3577.

[Ma+19] Hengbo Ma, Jiachen Li, Wei Zhan, and Masayoshi Tomizuka. “Wasserstein
Generative Learning with Kinematic Constraints for Probabilistic Interactive
Driving Behavior Prediction”. In: Intelligent Vehicles Symposium. Paris, France:
IEEE, 2019, pp. 2477–2483.

[MKA20] Vishal Mahajan, Christos Katrakazas, and Constantinos Antoniou. “Prediction
of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning”. In:
Transportation Research Record: Journal of the Transportation Research Board
2674.7 (2020), pp. 336–347.

[Mak+19] Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox. “Overcoming
Limitations of Mixture Density Networks: A Sampling and Fitting Framework
for Multimodal Future Prediction”. In: Conference on Computer Vision and
Pattern Recognition. Long Beach, USA: IEEE/CVF, 2019, pp. 7137–7146.

[Met+22] Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman.
Gradients are Not All You Need. Pre-print, arXiv:2111.05803v2. Jan. 2022.

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: Nature 518.7540 (2015), pp. 529–533.

[MWK17] Jeremy Morton, Tim A. Wheeler, and Mykel J. Kochenderfer. “Analysis of
Recurrent Neural Networks for Probabilistic Modeling of Driver Behavior”. In:
IEEE Transactions on Intelligent Transportation Systems 18.5 (2017), pp. 1289–
1298.

226

[Moz+22] Sajjad Mozaffari, Omar Y. Al-Jarrah, Mehrdad Dianati, Paul Jennings, and
Alexandros Mouzakitis. “Deep Learning-Based Vehicle Behavior Prediction
for Autonomous Driving Applications: A Review”. In: IEEE Transactions on
Intelligent Transportation Systems 23.1 (2022), pp. 33–47.

[Nas51] John Nash. “Non-Cooperative Games”. In: The Annals of Mathematics 54.2
(1951), pp. 286–295.

[Nau+20] Maximilian Naumann, Liting Sun, Wei Zhan, and Masayoshi Tomizuka. “An-
alyzing the Suitability of Cost Functions for Explaining and Imitating Human
Driving Behavior based on Inverse Reinforcement Learning”. In: International
Conference on Robotics and Automation. Online event: IEEE, 2020, pp. 5481–
5487.

[NR00] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement
Learning”. In: International Conference on Machine Learning. Stanford, USA,
2000, pp. 663–670.

[NW89] Nguyen and Widrow. “The truck backer-upper: an example of self-learning in
neural networks”. In: IEEE International Joint Conference on Neural Networks.
Washington, D.C., USA, 1989, 357–363 vol.2.

[OA16] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decen-
tralized POMDPs. Cham: Springer, 2016.

[Ond+16] Peter Ondrúška, Julie Dequaire, Dominic Zeng Wang, and Ingmar Posner. End-
to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks.
Workshop contribution at Robotics: Science and Systems, Ann Arbor, USA,
arXiv:1604.05091. 2016.

[OP16] Peter Ondrúška and Ingmar Posner. “Deep Tracking: Seeing Beyond Seeing
Using Recurrent Neural Networks”. In: Conference on Artificial Intelligence.
Vol. 30. Phoenix, USA: AAAI, 2016.

[Oyl+16] Dave W. Oyler, Yildiray Yildiz, Anouck R. Girard, Nan I. Li, and Ilya V. Kol-
manovsky. “A game theoretical model of traffic with multiple interacting drivers
for use in autonomous vehicle development”. In: American Control Conference.
Boston, USA: IEEE, 2016, pp. 1705–1710.

[Par+18a] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. “Time Limits
in Reinforcement Learning”. In: Proceedings of the 35th International Confer-
ence on Machine Learning, PMLR. Vol. 80. Stockholm, Sweden, 2018, pp. 4045–
4054.

227

D ADDITIONAL MODEL EXECUTIONS

[Par+18b] Florian Particke, Markus Hiller, Christian Feist, and Jörn Thielecke. “Improve-
ments in pedestrian movement prediction by considering multiple intentions in
a Multi-Hypotheses filter”. In: Position, Location and Navigation Symposium.
Monterey, USA: IEEE/ION, 2018, pp. 209–212.

[Pea09] Judea Pearl. “Causal inference in statistics: An overview”. In: Statistics Surveys
3 (2009), pp. 96–146.

[Pek+20] Christian Pek, Stefanie Manzinger, Markus Koschi, and Matthias Althoff. “Using
online verification to prevent autonomous vehicles from causing accidents”. In:
Nature Machine Intelligence 2.9 (2020), pp. 518–528.

[Pom89] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural
Network”. In: Advances in Neural Information Processing Systems. Denver,
USA, 1989, pp. 305–313.

[Pru+20] Sasinee Pruekprasert, Jérémy Dubut, Xiaoyi Zhang, Chao Huang, and Masako
Kishida. A Game-Theoretic Approach to Decision Making for Multiple Vehicles
at Roundabout. Pre-print, arXiv: 1904.06224. May 2020.

[Pru+19] Sasinee Pruekprasert, Xiaoyi Zhang, Jérémy Dubut, Chao Huang, and Masako
Kishida. “Decision Making for Autonomous Vehicles at Unsignalized Inter-
section in Presence of Malicious Vehicles”. In: International Intelligent Trans-
portation Systems Conference. Auckland, New Zealand: IEEE, 2019, pp. 2299–
2304.

[PS05] Vincenzo Punzo and Fulvio Simonelli. “Analysis and Comparison of Micro-
scopic Traffic Flow Models with Real Traffic Microscopic Data”. In: Transporta-
tion Research Record 1934.1 (2005), pp. 53–63.

[RK15] Eike Rehder and Horst Kloeden. “Goal-Directed Pedestrian Prediction”. In:
International Conference on Computer Vision Workshop. Santiago, Chile: IEEE,
2015, pp. 139–147.

[Reh+18] Eike Rehder, Florian Wirth, Martin Lauer, and Christoph Stiller. “Pedestrian Pre-
diction by Planning Using Deep Neural Networks”. In: International Conference
on Robotics and Automation. Brisbane, Australia: IEEE, 2018, pp. 5903–5908.

[Rei22] Jörg Reichardt. “Trajectories as Markov-States for Long Term Traffic Scene
Prediction”. In: 14. Uni-DAS Workshop Fahrerassistenz und automatisiertes
Fahren. Berkheim, Germany, 2022, pp. 21–34.

[Rhi+19] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. “PRE-
COG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings”. In:
International Conference on Computer Vision. Seoul, Korea: IEEE/CVF, 2019,
pp. 2821–2830.

228

[Rid+20] Daniela Ridel, Nachiket Deo, Denis Wolf, and Mohan Trivedi. “Scene Compli-
ant Trajectory Forecast With Agent-Centric Spatio-Temporal Grids”. In: IEEE
Robotics and Automation Letters 5.2 (2020), pp. 2816–2823.

[Rid+18] Daniela Ridel, Eike Rehder, Martin Lauer, Christoph Stiller, and Denis Wolf. “A
Literature Review on the Prediction of Pedestrian Behavior in Urban Scenarios”.
In: International Intelligent Transportation Systems Conference. Maui, USA:
IEEE, 2018, pp. 3105–3112.

[Roc+22] Teresa Rock, Mohammad Bahram, Chantal Himmels, and Stefanie Marker.
“Quantifying Realistic Behaviour of Traffic Agents in Urban Driving Simula-
tion Based on Questionnaires”. In: Intelligent Vehicles Symposium. Aachen,
Germany: IEEE, 2022, pp. 1675–1682.

[Ros+19] Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu, and Stefan
Roth. “Driving with Style: Inverse Reinforcement Learning in General-Purpose
Planning for Automated Driving”. In: International Conference on Intelligent
Robots and Systems. Macau, China: IEEE/RSJ, 2019, pp. 2658–2665.

[RB10] Stephane Ross and Drew Bagnell. “Efficient Reductions for Imitation Learning”.
In: International Conference on Artificial Intelligence and Statistics. Vol. 9.
Sardinia, Italy, 2010, pp. 661–668.

[RGB11] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. “A Reduction
of Imitation Learning and Structured Prediction to No-Regret Online Learn-
ing”. In: International Conference on Artificial Intelligence and Statistics. Fort
Lauderdale, USA, 2011.

[RK08] Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte Carlo
Method. 2nd ed. Wiley-Interscience, 2008.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: Nature 323 (1986), pp. 533–
536.

[Sad+18] Dorsa Sadigh, Nick Landolfi, Shankar S. Sastry, Sanjit A. Seshia, and Anca
D. Dragan. “Planning for cars that coordinate with people: leveraging effects
on human actions for planning and active information gathering over human
internal state”. In: Autonomous Robots 42.7 (2018), pp. 1405–1426.

[Sal+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
Xi Chen, and Xi Chen. “Improved Techniques for Training GANs”. In: Advances
in Neural Information Processing Systems. Vol. 29. Barcelona, Spain, 2016,
pp. 2234–2242.

229

D ADDITIONAL MODEL EXECUTIONS

[Sam+19] Mikayel Samvelyan et al. “The StarCraft Multi-Agent Challenge”. In: Interna-
tional Conference on Autonomous Agents and Multiagent Systems. Montreal,
Canada, 2019, pp. 2186–2188.

[San+19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In:
Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:
IEEE/CVF, 2019, pp. 4510–4520.

[Sch19] Alexander Scheel. “Fully Bayesian Vehicle Tracking Using Extended Object
Models”. PhD thesis. Ulm, Germany: Universität Ulm, 2019.

[Sch+22] Oliver Scheel, Luca Bergamini, Maciej Wołczyk, Błażej Osiński, and Peter
Ondrúška. “Urban Driver: Learning to Drive from Real-world Demonstrations
Using Policy Gradients”. In: Conference on Robot Learning, PMLR. Vol. 164.
London, UK, 2022, pp. 718–728.

[Sch+15a] Julian Schlechtriemen, Florian Wirthmueller, Andreas Wedel, Gabi Breuel, and
Klaus-Dieter Kuhnert. “When will it change the lane? A probabilistic regression
approach for rarely occurring events”. In: Intelligent Vehicles Symposium. Seoul,
South Korea: IEEE, 2015, pp. 1373–1379.

[SRW08] Robin Schubert, Eric Richter, and Gerd Wanielik. “Comparison and Evaluation
of Advanced Motion Models for Vehicle Tracking”. In: International Conference
on Information Fusion. Cologne, Germany: IEEE, 2008.

[Sch16] John Schulman. “Optimizing Expectations: From Deep Reinforcement Learning
to Stochastic Computation Graphs”. PhD thesis. Berkeley, USA: University of
California, 2016.

[Sch+15b] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. “Trust Region Policy Optimization”. In: International Conference on
Machine Learning. Lille, France, 2015, pp. 1889–1897.

[Sch+18a] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. “High-Dimensional Continuous Control Using Generalized Advan-
tage Estimation”. In: International Conference on Learning Representations.
Vancouver, Canada, 2018.

[Sch+17a] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. Pre-print, arXiv: 1707.06347v2. Aug.
2017.

[Sch21] Jens Schulz. “Interaction-Aware Probabilistic Behavior Prediction of Traffic
Participants in Urban Environments”. PhD thesis. Munich, Germany: Technische
Universität München, 2021.

230

[Sch+17b] Jens Schulz, Kira Hirsenkorn, Julian Lochner, Moritz Werling, and Darius
Burschka. “Estimation of collective maneuvers through cooperative multi-agent
planning”. In: Intelligent Vehicles Symposium. Los Angeles, USA: IEEE, 2017,
pp. 624–631.

[Sch+18b] Jens Schulz, Constantin Hubmann, Julian Löchner, and Darius Burschka.
“Interaction-Aware Probabilistic Behavior Prediction in Urban Environments”.
In: International Conference on Intelligent Robots and Systems. Madrid, Spain:
IEEE, 2018, pp. 3999–4006.

[Sch+18c] Jens Schulz, Constantin Hubmann, Julian Löchner, and Darius Burschka. “Mul-
tiple Model Unscented Kalman Filtering in Dynamic Bayesian Networks for
Intention Estimation and Trajectory Prediction”. In: International Intelligent
Transportation Systems Conference. Maui, USA: IEEE, 2018, pp. 1467–1474.

[Sch+19] Jens Schulz, Constantin Hubmann, Nikolai Morin, Julian Löchner, and Darius
Burschka. “Learning Interaction-Aware Probabilistic Driver Behavior Models
from Urban Scenarios”. In: Intelligent Vehicles Symposium. Paris, France: IEEE,
2019, pp. 1326–1333.

[Ści+21] Adam Ścibior, Vasileios Lioutas, Daniele Reda, Peyman Bateni, and Frank
Wood. “Imagining The Road Ahead: Multi-Agent Trajectory Prediction via
Differentiable Simulation”. In: International Intelligent Transportation Systems
Conference. Indianapolis, USA: IEEE, 2021, pp. 720–725.

[SW65] S. S. Shapiro and M. B. Wilk. “An Analysis of Variance Test for Normality
(Complete Samples)”. In: Biometrika 52.3/4 (1965), p. 591.

[Sil+17] David Silver et al. “Mastering the game of Go without human knowledge”. In:
Nature 550.7676 (2017), pp. 354–359.

[Spe+21] Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and
J. Andrew Bagnell. Feedback in Imitation Learning: The Three Regimes of
Covariate Shift. Pre-print, arXiv: 2102.02872. Feb. 2021.

[Sri+17] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles
Sutton. “VEEGAN: Reducing Mode Collapse in GANs using Implicit Vari-
ational Learning”. In: Advances in Neural Information Processing Systems.
Vol. 30. Long Beach, USA, 2017.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–
1958.

231

D ADDITIONAL MODEL EXECUTIONS

[SW95] Dale O. Stahl and Paul W. Wilson. “On Players’ Models of Other Players:
Theory and Experimental Evidence”. In: Games and Economic Behavior 10
(1995), pp. 218–254.

[SH14] Thomas Streubel and Karl Heinz Hoffmann. “Prediction of driver intended path
at intersections”. In: Intelligent Vehicles Symposium. MI, USA: IEEE, 2014,
pp. 134–139.

[Suo+21] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. “TrafficSim:
Learning to Simulate Realistic Multi-Agent Behaviors”. In: Conference on
Computer Vision and Pattern Recognition. Online event: IEEE/CVF, 2021.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduc-
tion. 2nd ed. Cambridge, Massachusetts: The MIT Press, 2018.

[Tan93] Ming Tan. “Multi-Agent Reinforcement Learning: Independent vs. Cooperative
Agents”. In: Proceedings of the 10th International Conference on Machine
Learning. 1993, pp. 330–337.

[TS19] Charlie Tang and Ruslan Salakhutdinov. “Multiple Futures Prediction”. In:
Advances in Neural Information Processing Systems 32. Vancouver, Canada,
2019, pp. 15424–15434.

[Tol+21] Ekaterina Tolstaya, Reza Mahjourian, Carlton Downey, Balakrishnan Vadarajan,
Benjamin Sapp, and Dragomir Anguelov. “Identifying Driver Interactions via
Conditional Behavior Prediction”. In: International Conference on Robotics and
Automation. Xi’an, China: IEEE, 2021, pp. 3473–3479.

[TF13] Quan Tran and Jonas Firl. “Modelling of traffic situations at urban intersections
with probabilistic non-parametric regression”. In: Intelligent Vehicles Sympo-
sium. Gold Coast City, Australia: IEEE, 2013, pp. 334–339.

[TF14] Quan Tran and Jonas Firl. “Online maneuver recognition and multimodal tra-
jectory prediction for intersection assistance using non-parametric regression”.
In: Intelligent Vehicles Symposium Proceedings. Dearborn, USA: IEEE, 2014,
pp. 918–923.

[TK10] Peter Trautman and Andreas Krause. “Unfreezing the robot: Navigation in
dense, interacting crowds”. In: International Conference on Intelligent Robots
and Systems. Taipei, Taiwan: IEEE/RSJ, 2010, pp. 797–803.

[THH00] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. “Congested Traffic States
in Empirical Observations and Microscopic Simulations”. In: Physical Review
E 62.2 (2000), pp. 1805–1824.

[TK09] Martin Treiber and Arne Kesting. “Modeling Lane-Changing Decisions with
MOBIL”. In: Traffic and Granular Flow ’07. Berlin, Heidelberg: Springer, 2009,
pp. 211–221.

232

[TK13a] Martin Treiber and Arne Kesting. “Microscopic Calibration and Validation of
Car-Following Models – A Systematic Approach”. In: Procedia - Social and
Behavioral Sciences 80 (2013), pp. 922–939.

[TK13b] Martin Treiber and Arne Kesting. Traffic Flow Dynamics. Berlin, Heidelberg:
Springer, 2013.

[Um+20] Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, and Nils Thuerey.
“Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iter-
ative PDE-Solvers”. In: Advances in Neural Information Processing Systems.
Vol. 33. Curran Associates, Inc., 2020, pp. 6111–6122.

[Van+18] Jessica Van Brummelen, Marie O’Brien, Dominique Gruyer, and Homayoun
Najjaran. “Autonomous vehicle perception: The technology of today and tomor-
row”. In: Transportation Research Part C: Emerging Technologies 89 (2018),
pp. 384–406.

[Var+22] Balakrishnan Varadarajan et al. “MultiPath++: Efficient Information Fusion and
Trajectory Aggregation for Behavior Prediction”. In: International Conference
on Robotics and Automation. arXiv: 2111.14973. IEEE, 2022.

[WW16] Walther Wachenfeld and Hermann Winner. “The Release of Autonomous Ve-
hicles”. In: Autonomous Driving: Technical, Legal and Social Aspects. Ed. by
Markus Maurer, J. Christian Gerdes, Barbara Lenz, and Hermann Winner. Berlin,
Heidelberg: Springer, 2016, pp. 425–449.

[WV00] E.A. Wan and R. Van Der Merwe. “The unscented Kalman filter for nonlinear
estimation”. In: Adaptive Systems for Signal Processing, Communications, and
Control Symposium. Lake Louise, Alta., Canada: IEEE, 2000, pp. 153–158.

[WQ01] Danwei Wang and Feng Qi. “Trajectory planning for a four-wheel-steering
vehicle”. In: International Conference on Robotics and Automation. Vol. 4.
IEEE, 2001, pp. 3320–3325.

[Wan+21] Pin Wang, Dapeng Liu, Jiayu Chen, Hanhan Li, and Ching-Yao Chan. “De-
cision Making for Autonomous Driving via Augmented Adversarial Inverse
Reinforcement Learning”. In: IEEE International Conference on Robotics and
Automation. Xi’an, China, 2021.

[WKA21] Xiao Wang, Hanna Krasowski, and Matthias Althoff. “CommonRoad-RL: A
Configurable Reinforcement Learning Environment for Motion Planning of
Autonomous Vehicles”. In: International Intelligent Transportation Systems
Conference. IEEE, 2021.

233

D ADDITIONAL MODEL EXECUTIONS

[WRK16] Tim A. Wheeler, Philipp Robbel, and Mykel J. Kochenderfer. “Analysis of
microscopic behavior models for probabilistic modeling of driver behavior”. In:
International Intelligent Transportation Systems Conference. Rio de Janeiro,
Brazil: IEEE, 2016, pp. 1604–1609.

[WB91] Steven D. Whitehead and Dana H. Ballard. “Learning to perceive and act by
trial and error”. In: Machine Learning 7.1 (1991), pp. 45–83.

[Wie+12] Jürgen Wiest, Matthias Höffken, Ulrich Kreßel, and Klaus Dietmayer. “Prob-
abilistic trajectory prediction with Gaussian mixture models”. In: 2012 IEEE
Intelligent Vehicles Symposium. Alcal de Henares , Madrid, Spain: IEEE, 2012,
pp. 141–146.

[Wie+13] Jürgen Wiest, Felix Kunz, Ulrich Kreßel, and Klaus Dietmayer. “Incorporating
Categorical Information for Enhanced Probabilistic Trajectory Prediction”. In:
International Conference on Machine Learning and Applications. Vol. 1. 2013,
pp. 402–407.

[Wil92] Ronald J Williams. “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning”. In: Machine Learning 8 (1992), pp. 229–
256.

[Wil+21] Benjamin Wilson et al. “Argoverse 2: Next Generation Datasets for Self-Driving
Perception and Forecasting”. In: Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks. 2021.

[Win+16] Hermann Winner, Stephan Hakuli, Felix Lotz, and Christina Singer, eds. Hand-
book of Driver Assistance Systems. Cham: Springer International Publishing,
2016.

[Wis20] Christian Wissing. “Trajektorienprädiktion für das automatisierte Fahren”. PhD
thesis. Technische Universität Dortmund, 2020.

[Woo+17] Hanwool Woo et al. “Lane-Change Detection Based on Vehicle-Trajectory
Prediction”. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 1109–
1116.

[Xie+18] Guotao Xie, Hongbo Gao, Lijun Qian, Bin Huang, Keqiang Li, and Jianqiang
Wang. “Vehicle Trajectory Prediction by Integrating Physics- and Maneuver-
Based Approaches Using Interactive Multiple Models”. In: IEEE Transactions
on Industrial Electronics 65.7 (2018), pp. 5999–6008.

[YL12] Je Hong Yoo and Reza Langari. “Stackelberg Game Based Model of High-
way Driving”. In: Dynamic Systems and Control Conference. Fort Lauderdale,
Florida, USA: ASME, 2012, pp. 499–508.

234

[YL13] Je Hong Yoo and Reza Langari. “A Stackelberg Game Theoretic Driver Model
for Merging”. In: Dynamic Systems and Control Conference. Palo Alto, Califor-
nia, USA: ASME, 2013.

[Yu+22] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
“The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games”. In:
Neural Information Processing Systems. arXiv: 2103.01955v3. 2022.

[Zha+19] Wei Zhan et al. INTERACTION Dataset: An INTERnational, Adversarial and
Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic
Maps. Pre-print, arXiv:1910.03088 [cs, eess]. Sept. 2019.

[Zha+22] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. version 1.0.0-alpha0. Cambridge University Press, 2022.

[ZY20] Hongming Zhang and Tianyang Yu. “Taxonomy of Reinforcement Learning
Algorithms”. In: Deep Reinforcement Learning: Fundamentals, Research and
Applications. Singapore: Springer, 2020, pp. 125–133.

[Zha+20] Lingyao Zhang, Po-Hsun Su, Jerrick Hoang, Galen Clark Haynes, and Mi-
col Marchetti-Bowick. “Map-Adaptive Goal-Based Trajectory Prediction”. In:
Conference on Robot Learning. arXiv: 2009.04450. 2020.

[Zha+21] Hang Zhao et al. “TNT: Target-driveN Trajectory Prediction”. In: Conference
on Robot Learning. 2021.

[Zha+17] M. Zhao, D. Käthner, M. Jipp, D. Söffker, and K. Lemmer. “Modeling driver
behavior at roundabouts: Results from a field study”. In: Intelligent Vehicles
Symposium. Los Angeles, CA, USA: IEEE, 2017, pp. 908–913.

[Zie+08] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K Dey. “Max-
imum Entropy Inverse Reinforcement Learning”. In: Conference on Artificial
Intelligence. AAAI, 2008.

[Zie+09] Brian D. Ziebart et al. “Planning-based prediction for pedestrians”. In: Interna-
tional Conference on Intelligent Robots and Systems. IEEE/RSJ, 2009, pp. 3931–
3936.

[ZWN20] Alex Zyner, Stewart Worrall, and Eduardo Nebot. “Naturalistic Driver Intention
and Path Prediction using Recurrent Neural Networks”. In: IEEE Transactions
on Intelligent Transportation Systems (2020). arXiv: 1807.09995.

[Zyn+17] Alex Zyner, Stewart Worrall, James Ward, and Eduardo Nebot. “Long short
term memory for driver intent prediction”. In: Intelligent Vehicles Symposium.
IEEE, 2017, pp. 1484–1489.

235

D ADDITIONAL MODEL EXECUTIONS

Online Sources
[DLR] German Aerospace Center (DLR). SUMO Documentation: Car-Following

Models. Accessed on June 13, 2022. URL: https://sumo.dlr.de/
docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_

Routes.html#car-following_models.

[Ach18] Joshua Achiam. Spinning Up in Deep RL. accessed August 8, 2022. 2018. URL:
https://spinningup.openai.com.

[Ack21] Evan Ackerman. What Full Autonomy Means for the Waymo Driver - IEEE
Spectrum. Accessed on April 20, 2023. 2021. URL: https://spectrum.
ieee.org/full-autonomy-waymo-driver.

[ADA22] ADAC. Audi A6 Avant: Gute Noten im Test. Accessed on August 20, 2022. Mar.
2022. URL: http://web.archive.org/web/20220420184213/
https://www.adac.de/rund-ums-fahrzeug/autokatalog/

marken-modelle/audi/audi-a6-avant/.

[AG22] Audi AG. Audi A6 Katalog. Accessed on August 20, 2022. Mar. 2022. URL:
http : / / web . archive . org / web / 20220419011940 / https :

//www.audi.de/dam/nemo/models/misc/pdf/my- 2022/

preislisten/preisliste_a6-limousine_s6-limousine_a6-

avant_s6-avant_a6-allroad-quattro.pdf.

[22] CARLA Documentation: Traffic Manager. Accessed on June 13, 2022. 2022.
URL: https : / / carla . readthedocs . io / en / latest / adv _
traffic_manager/.

[Ing23] David Ingram. Two companies race to deploy robotaxis in San Francisco. The
city wants them to hit the brakes. Jan. 2023. URL: https://www.nbcnews.
com/tech/tech-news/san-francisco-looks-hit-brakes-

self-driving-cars-rcna66204 (visited on 04/30/2023).

[JZH20] Hank Jebode, Scott Zagorski, and Gary Heydinger. Rollover Stability Mea-
surements For 2020 New Car Assessment Program (NCAP). Oct. 2020. URL:
http : / / web . archive . org / web / 20220820140731 / https :

//lindseyresearch.com/wp- content/uploads/2021/05/

NHTSA-2001-9663-0497-2020-NCAP-Rollover-Stability-

Measurements-Final-Report.pdf.

[Web14] Marc Weber. Where to? A History of Autonomous Vehicles. Section: Curatorial
Insights. May 2014. URL: https://computerhistory.org/blog/
where-to-a-history-of-autonomous-vehicles/ (visited on
04/30/2023).

236

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
https://spinningup.openai.com
https://spectrum.ieee.org/full-autonomy-waymo-driver
https://spectrum.ieee.org/full-autonomy-waymo-driver
http://web.archive.org/web/20220420184213/https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/audi/audi-a6-avant/
http://web.archive.org/web/20220420184213/https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/audi/audi-a6-avant/
http://web.archive.org/web/20220420184213/https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/audi/audi-a6-avant/
http://web.archive.org/web/20220419011940/https://www.audi.de/dam/nemo/models/misc/pdf/my-2022/preislisten/preisliste_a6-limousine_s6-limousine_a6-avant_s6-avant_a6-allroad-quattro.pdf
http://web.archive.org/web/20220419011940/https://www.audi.de/dam/nemo/models/misc/pdf/my-2022/preislisten/preisliste_a6-limousine_s6-limousine_a6-avant_s6-avant_a6-allroad-quattro.pdf
http://web.archive.org/web/20220419011940/https://www.audi.de/dam/nemo/models/misc/pdf/my-2022/preislisten/preisliste_a6-limousine_s6-limousine_a6-avant_s6-avant_a6-allroad-quattro.pdf
http://web.archive.org/web/20220419011940/https://www.audi.de/dam/nemo/models/misc/pdf/my-2022/preislisten/preisliste_a6-limousine_s6-limousine_a6-avant_s6-avant_a6-allroad-quattro.pdf
https://carla.readthedocs.io/en/latest/adv_traffic_manager/
https://carla.readthedocs.io/en/latest/adv_traffic_manager/
https://www.nbcnews.com/tech/tech-news/san-francisco-looks-hit-brakes-self-driving-cars-rcna66204
https://www.nbcnews.com/tech/tech-news/san-francisco-looks-hit-brakes-self-driving-cars-rcna66204
https://www.nbcnews.com/tech/tech-news/san-francisco-looks-hit-brakes-self-driving-cars-rcna66204
http://web.archive.org/web/20220820140731/https://lindseyresearch.com/wp-content/uploads/2021/05/NHTSA-2001-9663-0497-2020-NCAP-Rollover-Stability-Measurements-Final-Report.pdf
http://web.archive.org/web/20220820140731/https://lindseyresearch.com/wp-content/uploads/2021/05/NHTSA-2001-9663-0497-2020-NCAP-Rollover-Stability-Measurements-Final-Report.pdf
http://web.archive.org/web/20220820140731/https://lindseyresearch.com/wp-content/uploads/2021/05/NHTSA-2001-9663-0497-2020-NCAP-Rollover-Stability-Measurements-Final-Report.pdf
http://web.archive.org/web/20220820140731/https://lindseyresearch.com/wp-content/uploads/2021/05/NHTSA-2001-9663-0497-2020-NCAP-Rollover-Stability-Measurements-Final-Report.pdf
https://computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/
https://computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/

Software Packages
[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825

(2020), pp. 357–362.

[LeN19] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Architecture
Schematics”. In: Journal of Open Source Software 4.33 (2019), p. 747.

[Lia+18] Eric Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”.
In: Proceedings of the 35th International Conference on Machine Learning,
PMLR. Vol. 80. Stockholm, Sweden, 2018, pp. 3053–3062.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems.
Vancouver, Canada, 2019, pp. 8024–8035.

[Raf+21] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. “Stable-Baselines3: Reliable Reinforcement
Learning Implementations”. In: The Journal of Machine Learning Research 22.1
(2021), pp. 12348–12355.

[Tan11] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In: ;login: The
USENIX Magazine 36.1 (2011). Place: Frederiksberg, Denmark, pp. 42–47.

237

D ADDITIONAL MODEL EXECUTIONS

Supervised Theses
[Jun20] Jan Jung. “Lernen von Fahrermodellen in urbanen Situationen”. Bachelor thesis,

Friedrich-Alexander-Universität Erlangen-Nürnberg. 2020.

[Kon21] Fabian Konstantinidis. “Reinforcement Learning zur Vorhersage von Fahrzeug-
trajektorien in Kreisverkehrssituationen”. Master thesis, Technical University of
Munich. 2021.

[Lee20] Tobias Leemann. “Probabilistische Prädiktion von Fahrzeugtrajektorien mit
Methoden des maschinellen Lernens”. Master thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg. 2020.

[Oer19] Moritz Oertel. “Optimierungsbasierte Generierung von Trajektorien”. Master
thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg. 2019.

[Pij20] Lucas Pijnacker Hordijk. “From Axis-aligned to Oriented Bounding Boxes”.
Master thesis, Delft University of Technology. 2020.

[Sei19] Fabian Seidl. “Parameteridentifikation von Fahrermodellen zur Erzeugung
probabilistischer Vorhersagen”. Master thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg. 2019.

[Vog20] Carina Vogl. “Driving Maneuver Prediction at Roundabouts Using LSTM Net-
works”. Master thesis, Technical University of Munich. 2020.

[Wel19] Edgar Welte. “Modellierung des Verhaltens von Verkehrsteilnehmern als Switch-
ing Linear Dynamical System”. Bachelor Thesis, Technische Hochschule Ingol-
stadt. 2019.

238

	List of Abbreviations
	Symbols and Mathematical Notation
	Introduction
	Outline
	Contributions
	Publications

	Fundamentals of Driver Behavior Modeling
	Background: Applications
	Behavior Planning
	Behavior Simulation
	Related Tasks

	Core Challenges of Trajectory Prediction
	General Problem Formulation
	Approaches to Trajectory Prediction
	Physics-Based Models
	Maneuver-Based Models
	Interaction-Aware Models
	Passive Interaction-Awareness
	Reactive Interaction-Awareness
	Proactive Interaction-Awareness

	Other Prediction Methods
	Discussion

	Handling of Uncertainty
	Conditioning as an Enabler
	Representation of Uncertainty

	Environment Representation
	Conclusion

	Simulation Setup
	Kinematic Model
	Observation Model
	Dataset
	Implementation

	Direct Policy Learning: Behavioral Cloning
	Single-Step Behavioral Cloning
	Approach
	Baseline Model
	Discussion

	Multi-Step Training
	The Need for a Differentiable Simulation
	Training
	Related Works

	Experiments
	Single-Step Training
	Multi-Step Training
	Model Comparison

	Conclusion

	Learning from Rewards: Reinforcement Learning
	Fundamentals of Reinforcement Learning
	Policy Gradient Reinforcement Learning
	Advantage Estimates
	Proximal Policy Optimization

	Multi-Agent Reinforcement Learning
	Experiments: Single-Agent Reinforcement Learning
	Reward Function
	Learning to Drive
	Reducing the Training Time

	Experiments: Multi-Agent Reinforcement Learning
	Setup of the Partially Observable Stochastic Game
	Learning to Drive

	Modeling Individual Driver Traits
	Conclusion

	Reconstructing the Rewards: Inverse Reinforcement Learning
	Adversarial Learning
	Theoretical Background: Generative Adversarial Imitation Learning
	Adversarial Inverse Reinforcement Learning

	Adaptions for Behavior Prediction
	Related Works
	Experiments
	Generative Adversarial Imitation Learning
	Adversarial Inverse Reinforcement Learning

	Conclusion

	Comparison of All Models
	Visual Comparison of the Model Performance
	Quantitative Evaluation
	Training- and Runtime
	Conditional Prediction
	Conclusion

	Conclusion
	Summary
	Limitations and Future Work

	Evaluation of the Dataset Accuracy
	Dataset Statistics

	Mathematical Supplements
	Mean Error, Standard Deviation and RMSE
	The Squashed Gaussian Distribution
	Maximum Entropy Distribution

	Training Details
	Kinematic Model Parameters
	Behavioral Cloning
	Reinforcement Learning
	AIRL, GAIL

	Additional Model Executions
	Bibliography

